Four Types of Multiclass Frameworks for Pneumonia Classification and Its Validation in X-ray Scans Using Seven Types of Deep Learning Artificial Intelligence Models.
COVID-19
Omicron
chest X-rays
convolutional neural network
deep learning
transfer learning
Journal
Diagnostics (Basel, Switzerland)
ISSN: 2075-4418
Titre abrégé: Diagnostics (Basel)
Pays: Switzerland
ID NLM: 101658402
Informations de publication
Date de publication:
07 Mar 2022
07 Mar 2022
Historique:
received:
21
02
2022
revised:
04
03
2022
accepted:
04
03
2022
entrez:
25
3
2022
pubmed:
26
3
2022
medline:
26
3
2022
Statut:
epublish
Résumé
Background and Motivation: The novel coronavirus causing COVID-19 is exceptionally contagious, highly mutative, decimating human health and life, as well as the global economy, by consistent evolution of new pernicious variants and outbreaks. The reverse transcriptase polymerase chain reaction currently used for diagnosis has major limitations. Furthermore, the multiclass lung classification X-ray systems having viral, bacterial, and tubercular classes—including COVID-19—are not reliable. Thus, there is a need for a robust, fast, cost-effective, and easily available diagnostic method. Method: Artificial intelligence (AI) has been shown to revolutionize all walks of life, particularly medical imaging. This study proposes a deep learning AI-based automatic multiclass detection and classification of pneumonia from chest X-ray images that are readily available and highly cost-effective. The study has designed and applied seven highly efficient pre-trained convolutional neural networks—namely, VGG16, VGG19, DenseNet201, Xception, InceptionV3, NasnetMobile, and ResNet152—for classification of up to five classes of pneumonia. Results: The database consisted of 18,603 scans with two, three, and five classes. The best results were using DenseNet201, VGG16, and VGG16, respectively having accuracies of 99.84%, 96.7%, 92.67%; sensitivity of 99.84%, 96.63%, 92.70%; specificity of 99.84, 96.63%, 92.41%; and AUC of 1.0, 0.97, 0.92 (p < 0.0001 for all), respectively. Our system outperformed existing methods by 1.2% for the five-class model. The online system takes <1 s while demonstrating reliability and stability. Conclusions: Deep learning AI is a powerful paradigm for multiclass pneumonia classification.
Identifiants
pubmed: 35328205
pii: diagnostics12030652
doi: 10.3390/diagnostics12030652
pmc: PMC8946935
pii:
doi:
Types de publication
Journal Article
Langues
eng
Références
Comput Biol Med. 2017 Jan 1;80:77-96
pubmed: 27915126
Commun Biol. 2021 Jan 4;4(1):35
pubmed: 33398067
J Infect. 2020 May;80(5):e7-e13
pubmed: 32171865
J Big Data. 2021;8(1):101
pubmed: 34306963
Lancet. 2020 Feb 15;395(10223):497-506
pubmed: 31986264
Eur Rev Med Pharmacol Sci. 2021 Sep;25(18):5876-5884
pubmed: 34604981
JAMA. 2020 Aug 4;324(5):510-513
pubmed: 32609307
J Med Syst. 2017 Jun;41(6):98
pubmed: 28501967
Cancers (Basel). 2019 Jan 18;11(1):
pubmed: 30669406
Comput Biol Med. 2020 Oct;125:103958
pubmed: 32927257
Med Biol Eng Comput. 2021 Mar;59(3):511-533
pubmed: 33547549
Int J Cardiovasc Imaging. 2021 Apr;37(4):1349-1360
pubmed: 33211242
Biomed Signal Process Control. 2022 Jan;71:103126
pubmed: 34493940
Comput Methods Programs Biomed. 2020 Nov;196:105581
pubmed: 32534344
Euro Surveill. 2020 Dec;25(50):
pubmed: 33334398
Radiology. 2020 Apr;295(1):202-207
pubmed: 32017661
AJR Am J Roentgenol. 2020 May;214(5):1078-1082
pubmed: 32108495
Phys Eng Sci Med. 2020 Jun;43(2):635-640
pubmed: 32524445
Euro Surveill. 2020 Jan;25(3):
pubmed: 31992387
Sci Rep. 2021 May 27;11(1):11112
pubmed: 34045510
N Engl J Med. 2020 Feb 20;382(8):727-733
pubmed: 31978945
Diagnostics (Basel). 2021 Dec 02;11(12):
pubmed: 34943494
Health Inf Sci Syst. 2021 Oct 12;9(1):36
pubmed: 34659742
Expert Rev Respir Med. 2021 Feb;15(2):213-220
pubmed: 32951475
Appl Intell (Dordr). 2021;51(3):1690-1700
pubmed: 34764553
BMJ. 2021 Jan 26;372:n230
pubmed: 33500262
Sci Rep. 2021 Oct 4;11(1):19638
pubmed: 34608186
Int J Cardiovasc Imaging. 2021 May;37(5):1511-1528
pubmed: 33423132
Biomed Signal Process Control. 2022 Jan;71:103182
pubmed: 34580596
IEEE Trans Image Process. 2018 Jun;27(6):2623-2634
pubmed: 29533899
IEEE Access. 2020;8:115041-115050
pubmed: 32742893
Nat Rev Microbiol. 2021 Mar;19(3):155-170
pubmed: 33116300
Eur Rev Med Pharmacol Sci. 2020 Dec;24(23):12609-12622
pubmed: 33336781
J Public Health (Oxf). 2020 Nov 23;42(4):723-730
pubmed: 32935849
IEEE Trans Pattern Anal Mach Intell. 2021 Apr;43(4):1239-1253
pubmed: 31689183
Biology (Basel). 2022 Jan 13;11(1):
pubmed: 35053123
Intell Based Med. 2021;5:100034
pubmed: 33899036
Int J Comput Assist Radiol Surg. 2021 Mar;16(3):423-434
pubmed: 33532975
Comput Med Imaging Graph. 2018 Dec;70:53-62
pubmed: 30292910
J Med Virol. 2020 Jul;92(7):903-908
pubmed: 32219885
Comput Biol Med. 2020 Jun;121:103792
pubmed: 32568675
IEEE Trans Cybern. 2020 Sep;50(9):3840-3854
pubmed: 32324588
IEEE Trans Med Imaging. 2020 Aug;39(8):2688-2700
pubmed: 32396075
J Thorac Imaging. 2019 May;34(3):179-186
pubmed: 30870305
J Med Syst. 2017 Aug 23;41(10):152
pubmed: 28836045
Radiol Cardiothorac Imaging. 2020 Feb 13;2(1):e200034
pubmed: 33778547
IEEE J Biomed Health Inform. 2018 May;22(3):862-873
pubmed: 28622680
Eur Rev Med Pharmacol Sci. 2021 Oct;25(19):5904-5912
pubmed: 34661248
Comput Biol Med. 2020 Jul;122:103804
pubmed: 32658726
World J Diabetes. 2021 Mar 15;12(3):215-237
pubmed: 33758644
J Med Imaging (Bellingham). 2021 Jan;8(Suppl 1):014001
pubmed: 33457446
Comput Biol Med. 2021 Sep;136:104721
pubmed: 34371320
Sci Rep. 2020 Nov 11;10(1):19549
pubmed: 33177550
Pattern Recognit Lett. 2020 Oct;138:638-643
pubmed: 32958971
Diagnostics (Basel). 2021 Nov 15;11(11):
pubmed: 34829456
IEEE Trans Image Process. 2017 Oct;26(10):4843-4855
pubmed: 28708555
Rheumatol Int. 2022 Feb;42(2):215-239
pubmed: 35013839
Acta Biomed. 2020 Mar 19;91(1):157-160
pubmed: 32191675
Clin Imaging. 2021 Sep;77:244-249
pubmed: 34029929
IEEE Trans Pattern Anal Mach Intell. 2015 Oct 26;38(9):1901-1907
pubmed: 26513778
CNS Neurosci Ther. 2020 May;26(5):499-501
pubmed: 32266761
Eur J Radiol. 2019 May;114:14-24
pubmed: 31005165
Front Biosci (Landmark Ed). 2019 Jan 1;24(3):392-426
pubmed: 30468663
Comput Biol Med. 2021 Oct;137:104803
pubmed: 34536856
Biomed Signal Process Control. 2021 Feb;64:102365
pubmed: 33230398
Med Biol Eng Comput. 2020 Mar;58(3):471-482
pubmed: 31897798
Chaos Solitons Fractals. 2021 Jan;142:110495
pubmed: 33250589
Cell. 2018 Feb 22;172(5):1122-1131.e9
pubmed: 29474911
Curr Atheroscler Rep. 2018 May 21;20(7):33
pubmed: 29781047
AJR Am J Roentgenol. 2020 Jul;215(1):87-93
pubmed: 32174129
Lancet. 2020 Feb 15;395(10223):507-513
pubmed: 32007143
JAMA. 2020 May 12;323(18):1843-1844
pubmed: 32159775
Comput Biol Med. 2022 Apr;143:105273
pubmed: 35228172
J Public Health Res. 2021 Apr 19;10(3):
pubmed: 33876627
Comput Biol Med. 2021 May;132:104319
pubmed: 33799220
JAMA. 2021 Jan 12;325(2):133-134
pubmed: 33331884
Cureus. 2020 Mar 26;12(3):e7423
pubmed: 32337143
IEEE Access. 2021 Jun 02;9:80692-80702
pubmed: 34786316
J Med Virol. 2020 Apr;92(4):408-417
pubmed: 31944312
Clin Chem. 2020 Apr 1;66(4):549-555
pubmed: 32031583
Diagnostics (Basel). 2020 Mar 18;10(3):
pubmed: 32197339
JAMA Intern Med. 2020 Aug 1;180(8):1045-1046
pubmed: 32407441
Knowl Based Syst. 2021 Dec 5;233:
pubmed: 36059387