Normal Lung Tissue CT Density Changes after Volumetric-Arc Radiotherapy (VMAT) for Lung Cancer.
density changes
lung cancer
radiation pneumonitis
radiation-induced lung injury
radiodensity
radiotherapy
Journal
Journal of personalized medicine
ISSN: 2075-4426
Titre abrégé: J Pers Med
Pays: Switzerland
ID NLM: 101602269
Informations de publication
Date de publication:
17 Mar 2022
17 Mar 2022
Historique:
received:
02
02
2022
revised:
07
03
2022
accepted:
11
03
2022
entrez:
25
3
2022
pubmed:
26
3
2022
medline:
26
3
2022
Statut:
epublish
Résumé
Radiation-induced lung injury remains a significant toxicity in thoracic radiotherapy. Because a precise diagnosis is difficult and commonly used assessment scales are unclear and subjective, there is a need to establish quantitative and sensitive grading methods. The lung tissue density change expressed in Hounsfield units (HUs) derived from CT scans seems a useful numeric surrogate. The study aimed to confirm a dose-response effect on HU value changes (ΔHU), their evolution in time, and the impact of selected clinical and demographic factors. We used dedicated, self-developed software to register and analyze 120 pairs of initial and follow-up CT scans of 47 lung cancer patients treated with dynamic arc radiotherapy. The differences in HU values between CT scans were calculated within discretized dose-bins limited by isodose lines. We have proved the dose-effect relationship, which is well described with a sigmoid model. We found the time evolution of HU changes to suit a typical clinical presentation of radiation-induced toxicity. Some clinical factors were found to correlate with ΔHU degree: planning target volume (PTV), V35 in the lung, patient's age and a history of arterial hypertension, and initial lung ventilation intensity. Lung density change assessment turned out to be a sensitive and valuable method of grading post-RT lung toxicity.
Identifiants
pubmed: 35330484
pii: jpm12030485
doi: 10.3390/jpm12030485
pmc: PMC8955548
pii:
doi:
Types de publication
Journal Article
Langues
eng
Références
Int J Radiat Oncol Biol Phys. 2017 Oct 1;99(2):325-333
pubmed: 28871982
BMC Pulm Med. 2021 Jan 6;21(1):9
pubmed: 33407290
Int J Radiat Oncol Biol Phys. 2013 Feb 1;85(2):444-50
pubmed: 22682812
Cancer. 2020 Feb 15;126(4):840-849
pubmed: 31714592
Lung Cancer. 2014 Dec;86(3):329-33
pubmed: 25454199
Clin Oncol (R Coll Radiol). 2001;13(2):71-81
pubmed: 11373882
Respir Res. 2018 Apr 24;19(1):72
pubmed: 29690880
Int J Radiat Oncol Biol Phys. 2011 Nov 15;81(4):974-8
pubmed: 20932655
Clin Chest Med. 2017 Jun;38(2):201-208
pubmed: 28477633
Clin Pract. 2021 Jul 01;11(3):410-429
pubmed: 34287252
Int J Radiat Oncol Biol Phys. 2014 Jul 1;89(3):626-32
pubmed: 24929168
Int J Radiat Oncol Biol Phys. 2015 Jun 1;92(2):423-9
pubmed: 25817531
Int J Radiat Oncol Biol Phys. 2018 Nov 15;102(4):1357-1365
pubmed: 30353873
Acta Oncol. 2011 Jan;50(1):51-60
pubmed: 20874426
Clin Transl Radiat Oncol. 2020 Feb 11;22:1-8
pubmed: 32140574
Acta Oncol. 2012 Nov;51(8):975-83
pubmed: 22950387
Phys Med. 2017 Oct;42:150-156
pubmed: 29173909
Med Phys. 2021 Apr;48(4):1804-1814
pubmed: 33608933
Clin Lung Cancer. 2021 Sep;22(5):401-410
pubmed: 33678582
Radiat Oncol. 2019 Apr 29;14(1):72
pubmed: 31036015
Acta Oncol. 2011 May;50(4):509-17
pubmed: 21174519
Int J Radiat Oncol Biol Phys. 2017 Sep 1;99(1):61-69
pubmed: 28816162
Sci Rep. 2020 Jun 29;10(1):10559
pubmed: 32601297
Radiographics. 2004 Jul-Aug;24(4):985-97; discussion 998
pubmed: 15256622
Radiat Oncol. 2020 Sep 10;15(1):214
pubmed: 32912295
Chest. 2019 Jul;156(1):150-162
pubmed: 30998908
Lung Cancer. 2021 Nov;161:86-93
pubmed: 34543942
Int J Radiat Oncol Biol Phys. 2018 Nov 1;102(3):642-650
pubmed: 30244882
Lung Cancer. 2020 Jul;145:132-139
pubmed: 32447116
Radiother Oncol. 2013 Oct;109(1):89-94
pubmed: 24060177