Implementation of preemptive DNA sequence-based pharmacogenomics testing across a large academic medical center: The Mayo-Baylor RIGHT 10K Study.
Clinical translation
Implementation
Individualized medicine
Pharmacogenomics
Pre-emptive clinical DNA sequencing
Journal
Genetics in medicine : official journal of the American College of Medical Genetics
ISSN: 1530-0366
Titre abrégé: Genet Med
Pays: United States
ID NLM: 9815831
Informations de publication
Date de publication:
05 2022
05 2022
Historique:
received:
23
12
2021
revised:
25
01
2022
accepted:
26
01
2022
pubmed:
26
3
2022
medline:
11
5
2022
entrez:
25
3
2022
Statut:
ppublish
Résumé
The Mayo-Baylor RIGHT 10K Study enabled preemptive, sequence-based pharmacogenomics (PGx)-driven drug prescribing practices in routine clinical care within a large cohort. We also generated the tools and resources necessary for clinical PGx implementation and identified challenges that need to be overcome. Furthermore, we measured the frequency of both common genetic variation for which clinical guidelines already exist and rare variation that could be detected by DNA sequencing, rather than genotyping. Targeted oligonucleotide-capture sequencing of 77 pharmacogenes was performed using DNA from 10,077 consented Mayo Clinic Biobank volunteers. The resulting predicted drug response-related phenotypes for 13 genes, including CYP2D6 and HLA, affecting 21 drug-gene pairs, were deposited preemptively in the Mayo electronic health record. For the 13 pharmacogenes of interest, the genomes of 79% of participants carried clinically actionable variants in 3 or more genes, and DNA sequencing identified an average of 3.3 additional conservatively predicted deleterious variants that would not have been evident using genotyping. Implementation of preemptive rather than reactive and sequence-based rather than genotype-based PGx prescribing revealed nearly universal patient applicability and required integrated institution-wide resources to fully realize individualized drug therapy and to show more efficient use of health care resources.
Identifiants
pubmed: 35331649
pii: S1098-3600(22)00038-7
doi: 10.1016/j.gim.2022.01.022
pmc: PMC9272414
mid: NIHMS1811934
pii:
doi:
Substances chimiques
Cytochrome P-450 CYP2D6
EC 1.14.14.1
Types de publication
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1062-1072Subventions
Organisme : NIGMS NIH HHS
ID : U19 GM061388
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG034676
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM028157
Pays : United States
Organisme : NIA NIH HHS
ID : R33 AG058738
Pays : United States
Organisme : NHGRI NIH HHS
ID : U01 HG005137
Pays : United States
Organisme : NHGRI NIH HHS
ID : U01 HG006379
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM125633
Pays : United States
Informations de copyright
Copyright © 2022 American College of Medical Genetics and Genomics. Published by Elsevier Inc. All rights reserved.
Déclaration de conflit d'intérêts
Conflict of Interest Liewei Wang, John Logan Black III, and Richard M. Weinshilboum are cofounders of and stockholders in OneOme, LLC, which was used only to return results to the study participants. Additionally, John Logan Black III and Mayo Clinic Ventures have applied for a patent on the CNVAR software cited in this study as well as the methodology upon which the software is based. All other authors declare no conflicts of interest.
Références
Clin Pharmacol Ther. 2012 Mar;91(3):450-8
pubmed: 22278335
Clin Pharmacol Ther. 2017 Mar;101(3):341-358
pubmed: 28027596
Clin Pharmacol Ther. 2018 Mar;103(3):399-401
pubmed: 29134625
Mayo Clin Proc. 2014 Jan;89(1):25-33
pubmed: 24388019
Clin Pharmacol Ther. 2021 Jun;109(6):1528-1537
pubmed: 33237584
Pharmacotherapy. 2016 Aug;36(8):940-8
pubmed: 27312955
Mayo Clin Proc. 2017 Nov;92(11):1711-1722
pubmed: 29101939
Am J Health Syst Pharm. 2018 Dec 1;75(23):1939-1946
pubmed: 30301720
Pharmgenomics Pers Med. 2014 Jul 10;7:145-62
pubmed: 25045280
Int J Epidemiol. 2020 Feb 1;49(1):23-24k
pubmed: 31378813
Nat Protoc. 2009;4(7):1073-81
pubmed: 19561590
Clin Pharmacol Ther. 2018 May;103(5):752-755
pubmed: 29417560
Cell. 2011 Sep 30;147(1):32-43
pubmed: 21962505
Pharmacogenomics J. 2018 Jan;18(1):187-195
pubmed: 27779249
N Engl J Med. 2011 Mar 24;364(12):1144-53
pubmed: 21428770
Clin Genet. 2012 Oct;82(4):388-94
pubmed: 22698141
Wiley Interdiscip Rev Syst Biol Med. 2018 Jul;10(4):e1417
pubmed: 29474005
Clin Pharmacol Ther. 2020 Jan;107(1):171-175
pubmed: 31562822
Clin Pharmacol Ther. 2017 Aug;102(2):254-264
pubmed: 28390138
Circ Res. 2018 Apr 27;122(9):1176-1190
pubmed: 29700066
Clin Pharmacol Ther. 2017 Nov;102(5):859-869
pubmed: 28398598
Nat Genet. 2014 Mar;46(3):310-5
pubmed: 24487276
Clin Transl Sci. 2020 Jul;13(4):727-742
pubmed: 32004414
Clin Pharmacol Ther. 2018 May;103(5):795-801
pubmed: 29460273
J Mol Diagn. 2022 Mar;24(3):253-261
pubmed: 35041929
Clin Pharmacol Ther. 2019 Oct;106(4):855-865
pubmed: 31012492
Am J Med. 2016 Oct;129(10):1093-1099.e1
pubmed: 27155109
Clin Pharmacol Ther. 2020 Sep;108(3):557-565
pubmed: 32460360