Integrating remote sensing with ecology and evolution to advance biodiversity conservation.
Journal
Nature ecology & evolution
ISSN: 2397-334X
Titre abrégé: Nat Ecol Evol
Pays: England
ID NLM: 101698577
Informations de publication
Date de publication:
05 2022
05 2022
Historique:
received:
07
05
2021
accepted:
10
02
2022
pubmed:
26
3
2022
medline:
12
5
2022
entrez:
25
3
2022
Statut:
ppublish
Résumé
Remote sensing has transformed the monitoring of life on Earth by revealing spatial and temporal dimensions of biological diversity through structural, compositional and functional measurements of ecosystems. Yet, many aspects of Earth's biodiversity are not directly quantified by reflected or emitted photons. Inclusive integration of remote sensing with field-based ecology and evolution is needed to fully understand and preserve Earth's biodiversity. In this Perspective, we argue that multiple data types are necessary for almost all draft targets set by the Convention on Biological Diversity. We examine five key topics in biodiversity science that can be advanced by integrating remote sensing with in situ data collection from field sampling, experiments and laboratory studies to benefit conservation. Lowering the barriers for bringing these approaches together will require global-scale collaboration.
Identifiants
pubmed: 35332280
doi: 10.1038/s41559-022-01702-5
pii: 10.1038/s41559-022-01702-5
doi:
Types de publication
Journal Article
Review
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
506-519Informations de copyright
© 2022. Springer Nature Limited.
Références
Díaz, S. et al. Set ambitious goals for biodiversity and sustainability. Science 370, 411 (2020).
pubmed: 33093100
doi: 10.1126/science.abe1530
Soto-Navarro, C. A. et al. Towards a multidimensional biodiversity index for national application. Nat. Sustain. 4, 933–942 (2021).
Skidmore, A. K. et al. Priority list of biodiversity metrics to observe from space. Nat. Ecol. Evol. 5, 896–906 (2021).
pubmed: 33986541
doi: 10.1038/s41559-021-01451-x
Brum, F. T. et al. Global priorities for conservation across multiple dimensions of mammalian diversity. Proc. Natl Acad. Sci. USA 114, 7641–7646 (2017).
pubmed: 28674013
pmcid: 5530698
doi: 10.1073/pnas.1706461114
Girardello, M. et al. Global synergies and trade-offs between multiple dimensions of biodiversity and ecosystem services. Sci. Rep. 9, 5636 (2019).
pubmed: 30948774
pmcid: 6449357
doi: 10.1038/s41598-019-41342-7
Chaplin-Kramer, R. et al. Global modeling of nature’s contributions to people. Science 366, 255–258 (2019).
pubmed: 31601772
doi: 10.1126/science.aaw3372
Pettorelli, N. et al. Framing the concept of satellite remote sensing essential biodiversity variables: challenges and future directions. Remote Sens. Ecol. Conserv. 2, 122–131 (2016).
doi: 10.1002/rse2.15
Paganini, M., Leidner, A. K., Geller, G., Turner, W. & Wegmann, M. The role of space agencies in remotely sensed essential biodiversity variables. Remote Sens. Ecol. Conserv. 2, 132–140 (2016).
doi: 10.1002/rse2.29
O’Connor, B. et al. Earth observation as a tool for tracking progress towards the Aichi Biodiversity Targets. Remote Sens. Ecol. Conserv. 1, 19–28 (2015).
doi: 10.1002/rse2.4
Skidmore, A. K. et al. Environmental science: agree on biodiversity metrics to track from space. Nature 523, 403–405 (2015).
pubmed: 26201582
doi: 10.1038/523403a
Reddy, C. S. et al. Remote sensing enabled essential biodiversity variables for biodiversity assessment and monitoring: technological advancement and potentials. Biodivers. Conserv. 30, 1–14 (2021).
doi: 10.1007/s10531-020-02073-8
Vihervaara, P. et al. How essential biodiversity variables and remote sensing can help national biodiversity monitoring. Glob. Ecol. Conserv. 10, 43–59 (2017).
doi: 10.1016/j.gecco.2017.01.007
Luque, S., Pettorelli, N., Vihervaara, P. & Wegmann, M. Improving biodiversity monitoring using satellite remote sensing to provide solutions towards the 2020 conservation targets. Methods Ecol. Evol. 9, 1784–1786 (2018).
doi: 10.1111/2041-210X.13057
Moritz, C. Applications of mitochondrial DNA analysis in conservation: a critical review. Mol. Ecol. 3, 401–411 (1994).
doi: 10.1111/j.1365-294X.1994.tb00080.x
Graham, C. H., Ferrier, S., Huettman, F., Moritz, C. & Peterson, A. T. New developments in museum-based informatics and applications in biodiversity analysis. Trends Ecol. Evol. 19, 497–503 (2004).
pubmed: 16701313
doi: 10.1016/j.tree.2004.07.006
Czyż, E. A. et al. Intraspecific genetic variation of a Fagus sylvatica population in a temperate forest derived from airborne imaging spectroscopy time series. Ecol. Evol. 10, 7419–7430 (2020).
pubmed: 32760538
pmcid: 7391319
doi: 10.1002/ece3.6469
Guillén-Escribà, C. et al. Remotely sensed between-individual functional trait variation in a temperate forest. Ecol. Evol. 11, 10834–10867 (2021).
pubmed: 34429885
pmcid: 8366889
doi: 10.1002/ece3.7758
Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).
pubmed: 21350480
doi: 10.1038/nature09670
Shaw, R. G. & Etterson, J. R. Rapid climate change and the rate of adaptation: insight from experimental quantitative genetics. New Phytol. 195, 752–765 (2012).
pubmed: 22816320
doi: 10.1111/j.1469-8137.2012.04230.x
Wang, Z. et al. Foliar functional traits from imaging spectroscopy across biomes in the eastern North America. New Phytol. 228, 494–511 (2020).
pubmed: 32463927
doi: 10.1111/nph.16711
Poorter, L. et al. Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology 89, 1908–1920 (2008).
pubmed: 18705377
doi: 10.1890/07-0207.1
Cornwell, W. K. & Ackerly, D. D. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol. Monogr. 79, 109–126 (2009).
doi: 10.1890/07-1134.1
Gao, Q. et al. Stimulation of soil respiration by elevated CO
pubmed: 33318221
pmcid: 7777058
doi: 10.1073/pnas.2002780117
Urban, M. C. et al. Improving the forecast for biodiversity under climate change. Science 353, aad8466 (2016).
pubmed: 27609898
doi: 10.1126/science.aad8466
Hoffmann, A. A. & Sgrò, C. M. Comparative studies of critical physiological limits and vulnerability to environmental extremes in small ectotherms: how much environmental control is needed? Integr. Zool. 13, 355–371 (2018).
pubmed: 29168624
pmcid: 6099205
doi: 10.1111/1749-4877.12297
Marshall, C. R. A simple method for bracketing absolute divergence times on molecular phylogenies using multiple fossil calibration points. Am. Nat. 171, 726–742 (2008).
pubmed: 18462127
doi: 10.1086/587523
Quental, T. B. & Marshall, C. R. Diversity dynamics: molecular phylogenies need the fossil record. Trends Ecol. Evol. 25, 434–441 (2010).
pubmed: 20646780
doi: 10.1016/j.tree.2010.05.002
Graham, C. H., Moritz, C. & Williams, S. E. Habitat history improves prediction of biodiversity in rainforest fauna. Proc. Natl Acad. Sci. USA 103, 632–636 (2006).
pubmed: 16407139
pmcid: 1334636
doi: 10.1073/pnas.0505754103
Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).
doi: 10.1111/j.2006.0906-7590.04596.x
Zipkin, E. F. et al. Addressing data integration challenges to link ecological processes across scales. Front. Ecol. Environ. 19, 30–38 (2021).
doi: 10.1002/fee.2290
Cavender-Bares, J. et al. BII-Implementation: the causes and consequences of plant biodiversity across scales in a rapidly changing world. Res. Ideas Outcomes 7, e63850 (2021).
doi: 10.3897/rio.7.e63850
Hwang, D. et al. A data integration methodology for systems biology. Proc. Natl Acad. Sci. USA 102, 17296–17301 (2005).
pubmed: 16301537
pmcid: 1297682
doi: 10.1073/pnas.0508647102
O’Malley, M. A. & Soyer, O. S. The roles of integration in molecular systems biology. Stud. Hist. Philos. Sci. C 43, 58–68 (2012).
Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019).
von Humboldt, A. & Bonpland, A. Essai sur la Géographie des Plantes, Accompagné d’un Tableau Physique des Régions Equinoxiales (Levrault & Schoell, 1807).
Darwin, C. On the Origin of Species by Means of Natural Selection 6th edn (with corrections and additions to 1872) (John Murray, 1888).
Braun, E. L. Deciduous Forests of Eastern North America (Hafner Publishing Company, 1967).
Slik, J. W. F. et al. Phylogenetic classification of the world’s tropical forests. Proc. Natl Acad. Sci. USA 115, 1837 (2018).
pubmed: 29432167
pmcid: 5828595
doi: 10.1073/pnas.1714977115
Tingley, M. W., Monahan, W. B., Beissinger, S. R. & Moritz, C. Birds track their Grinnellian niche through a century of climate change. Proc. Natl Acad. Sci. USA 106, 19637–19643 (2009).
pubmed: 19805037
pmcid: 2780944
doi: 10.1073/pnas.0901562106
Wiens, J. J. et al. Niche conservatism as an emerging principle in ecology and conservation biology. Ecol. Lett. 13, 1310–1324 (2010).
pubmed: 20649638
doi: 10.1111/j.1461-0248.2010.01515.x
Cavender-Bares, J., Ackerly, D., Hobbie, S. & Townsend, P. Evolutionary legacy effects on ecosystems: biogeographic origins, plant traits, and implications for management in the era of global change. Annu. Rev. Ecol. Evol. Syst. 47, 433–462 (2016).
doi: 10.1146/annurev-ecolsys-121415-032229
Crisp, M. D., Arroyo, M. T. K., Cook, L. G., Gandolfo, M. A. & Jordan, G. J. Phylogenetic biome conservatism on a global scale. Nature 458, 754–756 (2009).
pubmed: 19219025
doi: 10.1038/nature07764
Forrestel, E. J., Donoghue, M. J. & Smith, M. D. Convergent phylogenetic and functional responses to altered fire regimes in mesic savanna grasslands of North America and South Africa. New Phytol. 203, 1000–1011 (2014).
pubmed: 24835304
doi: 10.1111/nph.12846
Auler, A. S. & Smart, P. L. Late quaternary paleoclimate in semiarid northeastern Brazil from U-series dating of travertine and water-table speleothems. Quat. Res. 55, 159–167 (2001).
doi: 10.1006/qres.2000.2213
Cheng, H. et al. Climate change patterns in Amazonia and biodiversity. Nat. Commun. 4, 1411 (2013).
pubmed: 23361002
doi: 10.1038/ncomms2415
Ledru, M.-P. et al. The last 50,000 years in the Neotropics (Southern Brazil): evolution of vegetation and climate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 123, 239–257 (1996).
doi: 10.1016/0031-0182(96)00105-8
Brown, J. L., Hill, D. J., Dolan, A. M., Carnaval, A. C. & Haywood, A. M. PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Sci. Data 5, 180254 (2018).
pubmed: 30422125
pmcid: 6233254
doi: 10.1038/sdata.2018.254
Delsuc, F., Brinkmann, H. & Philippe, H. Phylogenomics and the reconstruction of the tree of life. Nat. Rev. Genet. 6, 361–375 (2005).
pubmed: 15861208
doi: 10.1038/nrg1603
Ciccarelli, F. D. et al. Toward automatic reconstruction of a highly resolved tree of life. Science 311, 1283–1287 (2006).
pubmed: 16513982
doi: 10.1126/science.1123061
Beck, P. S. A. & Goetz, S. J. Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences. Environ. Res. Lett. 6, 045501 (2011).
doi: 10.1088/1748-9326/6/4/045501
Kokaly, R. F., Asner, G. P., Ollinger, S. V., Martin, M. E. & Wessman, C. A. Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies. Remote Sens. Environ. 113, S78–S91 (2009).
doi: 10.1016/j.rse.2008.10.018
Graham, C. H. et al. The origin and maintenance of montane diversity: integrating evolutionary and ecological processes. Ecography 37, 711–719 (2014).
doi: 10.1111/ecog.00578
Carnaval, A. C., Hickerson, M. J., Haddad, C. F., Rodrigues, M. T. & Moritz, C. Stability predicts genetic diversity in the Brazilian Atlantic forest hotspot. Science 323, 785–789 (2009).
pubmed: 19197066
doi: 10.1126/science.1166955
Dynesius, M. & Jansson, R. Evolutionary consequences of changes in species geographical distributions driven by Milankovitch climate oscillations. Proc. Natl Acad. Sci. USA 97, 9115 (2000).
pubmed: 10922067
pmcid: 16831
doi: 10.1073/pnas.97.16.9115
Carnaval, A. C. et al. Prediction of phylogeographic endemism in an environmentally complex biome. Proc. R. Soc. B 281, 20141461 (2014).
pubmed: 25122231
pmcid: 4150330
doi: 10.1098/rspb.2014.1461
Soudzilovskaia, N. A. et al. Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat. Commun. 10, 5077 (2019).
pubmed: 31700000
pmcid: 6838125
doi: 10.1038/s41467-019-13019-2
Forest, F., Crandall, K. A., Chase, M. W. & Faith, D. P. Phylogeny, extinction and conservation: embracing uncertainties in a time of urgency. Philos. Trans. R. Soc. Lond. B 370, 20140002 (2015).
doi: 10.1098/rstb.2014.0002
Faith, D. P. Phylogenetic diversity, functional trait diversity and extinction: avoiding tipping points and worst-case losses. Philos. Trans. R. Soc. Lond. B 370, 20140011 (2015).
doi: 10.1098/rstb.2014.0011
Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007).
doi: 10.1111/j.0030-1299.2007.15559.x
Lavorel, S. et al. Assessing functional diversity in the field—methodology matters! Funct. Ecol. 22, 134–147 (2008).
Petchey, O. L. & Gaston, K. J. Functional diversity: back to basics and looking forward. Ecol. Lett. 9, 741–758 (2006).
pubmed: 16706917
doi: 10.1111/j.1461-0248.2006.00924.x
Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16, 545–556 (2002).
doi: 10.1046/j.1365-2435.2002.00664.x
Suding, K. N. et al. Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Glob. Change Biol. 14, 1125–1140 (2008).
doi: 10.1111/j.1365-2486.2008.01557.x
Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).
pubmed: 15103368
doi: 10.1038/nature02403
Reich, P. B., Walters, M. B. & Ellsworth, D. S. From tropics to tundra: global convergence in plant functioning. Proc. Natl Acad. Sci. USA 94, 13730–13734 (1997).
pubmed: 9391094
pmcid: 28374
doi: 10.1073/pnas.94.25.13730
Dahlin, K. M., Asner, G. P. & Field, C. B. Environmental and community controls on plant canopy chemistry in a Mediterranean-type ecosystem. Proc. Natl Acad. Sci. USA 110, 6895–6900 (2013).
pubmed: 23569241
pmcid: 3637728
doi: 10.1073/pnas.1215513110
Kattge, J. et al. TRY plant trait database—enhanced coverage and open access. Glob. Chang. Biol. 26, 119–188 (2020).
pubmed: 31891233
doi: 10.1111/gcb.14904
Enquist, B., Condit, R., Peet, R., Schildhauer, M. & Thiers, B. Cyberinfrastructure for an integrated botanical information network to investigate the ecological impacts of global climate change on plant biodiversity. PeerJ 4, e2615v2612 (2016).
Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).
pubmed: 26700811
doi: 10.1038/nature16489
Asner, G. P., Martin, R. E., Anderson, C. B. & Knapp, D. E. Quantifying forest canopy traits: imaging spectroscopy versus field survey. Remote Sens. Environ. 158, 15–27 (2015).
doi: 10.1016/j.rse.2014.11.011
Fajardo, A. & Siefert, A. Phenological variation of leaf functional traits within species. Oecologia 180, 951–959 (2016).
pubmed: 26796408
doi: 10.1007/s00442-016-3545-1
Townsend, P. A., Foster, J. R., Chastain, R. A. Jr. & Currie, W. S. Application of imaging spectroscopy to mapping canopy nitrogen in the forests of the central Appalachian Mountains using Hyperion and AVIRIS. Geosci. Remote Sens. IEEE Trans. 41, 1347–1354 (2003).
doi: 10.1109/TGRS.2003.813205
Féret, J. B., Gitelson, A. A., Noble, S. D. & Jacquemoud, S. PROSPECT-D: towards modeling leaf optical properties through a complete lifecycle. Remote Sens. Environ. 193, 204–215 (2017).
doi: 10.1016/j.rse.2017.03.004
Berger, K. et al. Retrieval of aboveground crop nitrogen content with a hybrid machine learning method. Int. J. Appl. Earth Obs. Geoinf. 92, 102174 (2020).
Jacquemoud, S. & Ustin, S. Leaf Optical Properties (Cambridge Univ. Press, 2019).
Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).
pubmed: 10706275
doi: 10.1038/35002501
Hoffman, M., Koenig, K., Bunting, G., Costanza, J. & Williams, K. J. Biodiversity hotspots (version 2016.1). Zenodo https://doi.org/10.5281/zenodo.3261807 (2016).
Folke, C. et al. Resilience thinking: integrating resilience, adaptability and transformability. Ecol. Soc. 15, 20 (2010).
doi: 10.5751/ES-03610-150420
Oliver, T. H. et al. Declining resilience of ecosystem functions under biodiversity loss. Nat. Commun. 6, 10122 (2015).
Hautier, Y. et al. Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science 348, 336–340 (2015).
pubmed: 25883357
doi: 10.1126/science.aaa1788
Peterson, G., Allen, C. & Holling, C. Ecological resilience, biodiversity, and scale. Ecosystems 1, 6–18 (1998).
doi: 10.1007/s100219900002
MacDougall, A. S., McCann, K. S., Gellner, G. & Turkington, R. Diversity loss with persistent human disturbance increases vulnerability to ecosystem collapse. Nature 494, 86–89 (2013).
pubmed: 23389543
doi: 10.1038/nature11869
Duncan, B. N. et al. Space‐based observations for understanding changes in the Arctic‐Boreal Zone. Rev. Geophys. 58, e2019RG000652 (2020).
doi: 10.1029/2019RG000652
Wittenberg, L., Malkinson, D., Beeri, O., Halutzy, A. & Tesler, N. Spatial and temporal patterns of vegetation recovery following sequences of forest fires in a Mediterranean landscape, Mt. Carmel Israel. CATENA 71, 76–83 (2007).
doi: 10.1016/j.catena.2006.10.007
Meng, Y. et al. Analysis of ecological resilience to evaluate the inherent maintenance capacity of a forest ecosystem using a dense Landsat time series. Ecol. Inform. 57, 101064 (2020).
doi: 10.1016/j.ecoinf.2020.101064
Wilson, A. M., Latimer, A. M. & Silander, J. A. Climatic controls on ecosystem resilience: postfire regeneration in the Cape Floristic Region of South Africa. Proc. Natl Acad. Sci. USA 112, 9058 (2015).
pubmed: 26150521
pmcid: 4517208
doi: 10.1073/pnas.1416710112
Xie, Z. et al. Landsat and GRACE observations of arid wetland dynamics in a dryland river system under multi-decadal hydroclimatic extremes. J. Hydrol. 543, 818–831 (2016).
Allen, C. R. et al. Quantifying spatial resilience. J. Appl. Ecol. 53, 625–635 (2016).
doi: 10.1111/1365-2664.12634
Lausch, A. et al. Understanding and assessing vegetation health by in situ species and remote-sensing approaches. Methods Ecol. Evol. 9, 1799–1809 (2018).
doi: 10.1111/2041-210X.13025
Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).
pubmed: 30213911
doi: 10.1126/science.aau3445
Faruk, A., Belabut, D., Ahmad, N., Knell, R. J. & Garner, T. W. J. Effects of oil-palm plantations on diversity of tropical anurans. Conserv. Biol. 27, 615–624 (2013).
pubmed: 23692022
doi: 10.1111/cobi.12062
Yue, S., Brodie, J. F., Zipkin, E. F. & Bernard, H. Oil palm plantations fail to support mammal diversity. Ecol. Appl. 25, 2285–2292 (2015).
pubmed: 26910955
doi: 10.1890/14-1928.1
Dislich, C. et al. A review of the ecosystem functions in oil palm plantations, using forests as a reference system. Biol. Rev. Camb. Philos. Soc. 92, 1539–1569 (2017).
pubmed: 27511961
doi: 10.1111/brv.12295
Slingsby, J. A., Moncrieff, G. R. & Wilson, A. M. Near-real time forecasting and change detection for an open ecosystem with complex natural dynamics. ISPRS J. Photogramm. Remote Sens. 166, 15–25 (2020).
doi: 10.1016/j.isprsjprs.2020.05.017
Spasojevic, M. J. et al. Scaling up the diversity–resilience relationship with trait databases and remote sensing data: the recovery of productivity after wildfire. Glob. Change Biol. 22, 1421–1432 (2016).
doi: 10.1111/gcb.13174
van der Plas, F. et al. Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning. Nat. Ecol. Evol. 4, 1602–1611 (2020).
pubmed: 33020598
doi: 10.1038/s41559-020-01316-9
Williams, L. J. et al. Remote spectral detection of biodiversity effects on forest biomass. Nat. Ecol. Evol. 5, 46–54 (2021).
pubmed: 33139920
doi: 10.1038/s41559-020-01329-4
Schweiger, A. K. et al. Coupling spectral and resource-use complementarity in experimental grassland and forest communities. Proc. R. Soc. B 288, 20211290 (2021).
pubmed: 34465243
pmcid: 8437019
doi: 10.1098/rspb.2021.1290
Isbell, F. I., Polley, H. W. & Wilsey, B. J. Biodiversity, productivity and the temporal stability of productivity: patterns and processes. Ecol. Lett. 12, 443–451 (2009).
pubmed: 19379138
doi: 10.1111/j.1461-0248.2009.01299.x
Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).
pubmed: 11595939
doi: 10.1038/35098000
Isbell, F., Tilman, D., Reich, P. B. & Clark, A. T. Deficits of biodiversity and productivity linger a century after agricultural abandonment. Nat. Ecol. Evol. 3, 1533–1538 (2019).
pubmed: 31666737
doi: 10.1038/s41559-019-1012-1
Walters, M. & Scholes, R. The GEO Handbook on Biodiversity Observation Networks (Springer, 2017).
Kühl, H. S. et al. Effective biodiversity monitoring needs a culture of integration. One Earth 3, 462–474 (2020).
doi: 10.1016/j.oneear.2020.09.010
Sasaki, T., Furukawa, T., Iwasaki, Y., Seto, M. & Mori, A. S. Perspectives for ecosystem management based on ecosystem resilience and ecological thresholds against multiple and stochastic disturbances. Ecol. Indic. 57, 395–408 (2015).
doi: 10.1016/j.ecolind.2015.05.019
Thompson, B. K., Olden, J. D. & Converse, S. J. Mechanistic invasive species management models and their application in conservation. Conserv. Sci. Pract. 3, e533 (2021).
Lewis, S. L., Edwards, D. P. & Galbraith, D. Increasing human dominance of tropical forests. Science 349, 827–832 (2015).
pubmed: 26293955
doi: 10.1126/science.aaa9932
Ellis, E. C. et al. Used planet: a global history. Proc. Natl Acad. Sci. USA 110, 7978–7985 (2013).
pubmed: 23630271
pmcid: 3657770
doi: 10.1073/pnas.1217241110
McKey, D. et al. Pre-Columbian agricultural landscapes, ecosystem engineers, and self-organized patchiness in Amazonia. Proc. Natl Acad. Sci. USA 107, 7823–7828 (2010).
pubmed: 20385814
pmcid: 2867901
doi: 10.1073/pnas.0908925107
Bush, M. B. et al. A 6900-year history of landscape modification by humans in lowland Amazonia. Quat. Sci. Rev. 141, 52–64 (2016).
doi: 10.1016/j.quascirev.2016.03.022
Wright, J. L. et al. Sixteen hundred years of increasing tree cover prior to modern deforestation in Southern Amazon and Central Brazilian savannas. Glob. Change Biol. 27, 136–150 (2021).
doi: 10.1111/gcb.15382
Boivin, N. & Crowther, A. Mobilizing the past to shape a better Anthropocene. Nat. Ecol. Evol. 5, 273–284 (2021).
pubmed: 33462488
doi: 10.1038/s41559-020-01361-4
Malhi, Y., Gardner, T. A., Goldsmith, G. R., Silman, M. R. & Zelazowski, P. Tropical forests in the Anthropocene. Ann. Rev. Environ. Res. 39, 125–159 (2014).
Hurtt, G. C. et al. Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geosci. Model Dev. 13, 5425–5464 (2020).
doi: 10.5194/gmd-13-5425-2020
Verburg, P. H., Erb, K.-H., Mertz, O. & Espindola, G. Land system science: between global challenges and local realities. Curr. Opin. Environ. Sustain. 5, 433–437 (2013).
pubmed: 24851141
pmcid: 4018982
doi: 10.1016/j.cosust.2013.08.001
Pendrill, F., Persson, U. M., Godar, J. & Kastner, T. Deforestation displaced: trade in forest-risk commodities and the prospects for a global forest transition. Environ. Res. Lett. 14, 055003 (2019).
doi: 10.1088/1748-9326/ab0d41
Burke, M., Driscoll, A., Lobell, D. B. & Ermon, S. Using satellite imagery to understand and promote sustainable development. Science 371, eabe8628 (2021).
pubmed: 33737462
doi: 10.1126/science.abe8628
Schell, C. J. et al. The ecological and evolutionary consequences of systemic racism in urban environments. Science 369, eaay4497 (2020).
Trounstine, J. The geography of inequality: how land use regulation produces segregation. Am. Political Sci. Rev. 114, 443–455 (2020).
doi: 10.1017/S0003055419000844
Su, S., Pi, J., Xie, H., Cai, Z. & Weng, M. Community deprivation, walkability, and public health: highlighting the social inequalities in land use planning for health promotion. Land Use Policy 67, 315–326 (2017).
doi: 10.1016/j.landusepol.2017.06.005
Coomes, O. T., Takasaki, Y. & Rhemtulla, J. M. Forests as landscapes of social inequality tropical forest cover and land distribution among shifting cultivators. Ecol. Soc. 21, 20 (2016).
Watmough, G. R. et al. Socioecologically informed use of remote sensing data to predict rural household poverty. Proc. Natl Acad. Sci. USA 116, 1213 (2019).
pubmed: 30617073
pmcid: 6347693
doi: 10.1073/pnas.1812969116
Verburg, P. H. et al. Land system science and sustainable development of the earth system: a global land project perspective. Anthropocene 12, 29–41 (2015).
doi: 10.1016/j.ancene.2015.09.004
Bickenbach, F., Bode, E., Nunnenkamp, P. & Söder, M. Night lights and regional GDP. Rev. World Econ. 152, 425–447 (2016).
doi: 10.1007/s10290-016-0246-0
Mayer, A. et al. Applying the human appropriation of net primary production framework to map provisioning ecosystem services and their relation to ecosystem functioning across the European Union. Ecosyst. Serv. 51, 101344 (2021).
pubmed: 34631401
pmcid: 8491453
doi: 10.1016/j.ecoser.2021.101344
Li, Y. Urban Green Space Analysis on UBC Vancouver Campus: Integrating Virtual Gaming Technology to Map Cultural Use and Biodiversity Value of Urban Green Space (Univ. British Columbia, 2021).
Ghaffarian, S., Roy, D., Filatova, T. & Kerle, N. Agent-based modelling of post-disaster recovery with remote sensing data. Int. J. Disaster Risk Reduct. 60, 102285 (2021).
doi: 10.1016/j.ijdrr.2021.102285
Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551–556 (2020).
pubmed: 32908312
doi: 10.1038/s41586-020-2705-y
Zeng, Y. et al. Environmental destruction not avoided with the Sustainable Development Goals. Nat. Sustain. 3, 795–798 (2020).
doi: 10.1038/s41893-020-0555-0
Mirza, M. U., Xu, C., Bavel, B. V., van Nes, E. H. & Scheffer, M. Global inequality remotely sensed. Proc. Natl Acad. Sci. USA 118, e1919913118 (2021).
pubmed: 33903226
pmcid: 8106331
doi: 10.1073/pnas.1919913118
Kavvada, A. et al. Towards delivering on the Sustainable Development Goals using Earth observations. Remote Sens. Environ. 247, 111930 (2020).
doi: 10.1016/j.rse.2020.111930
Hooper, D. U. & Vitousek, P. M. Effects of plant composition and diversity on nutrient cycling. Ecol. Monogr. 68, 121–149 (1998).
doi: 10.1890/0012-9615(1998)068[0121:EOPCAD]2.0.CO;2
Craine, J. M. et al. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol. 183, 992 (2009).
doi: 10.1111/j.1469-8137.2009.02917.x
Madritch, M. D. et al. Imaging spectroscopy links aspen genotype with below-ground processes at landscape scales. Philos. Trans. R. Soc. B 369, 20130194 (2014).
doi: 10.1098/rstb.2013.0194
Hobbie, S. E. Plant species effects on nutrient cycling: revisiting litter feedbacks. Trends Ecol. Evol. 30, 357–363 (2015).
pubmed: 25900044
doi: 10.1016/j.tree.2015.03.015
Cline, L. C. et al. Resource availability underlies the plant–fungal diversity relationship in a grassland ecosystem. Ecology 99, 204–216 (2018).
pubmed: 29106700
doi: 10.1002/ecy.2075
Wardle, D. et al. Ecological linkages between aboveground and belowground biota. Science 304, 1629–1633 (2004).
pubmed: 15192218
doi: 10.1126/science.1094875
Meier, C. L. & Bowman, W. D. Links between plant litter chemistry, species diversity, and below-ground ecosystem function. Proc. Natl Acad. Sci. USA 105, 19780–19785 (2008).
pubmed: 19064910
pmcid: 2604978
doi: 10.1073/pnas.0805600105
Gold, K. M. et al. Hyperspectral measurements enable pre-symptomatic detection and differentiation of contrasting physiological effects of late blight and early blight in potato. Remote Sens. 12, 286 (2020).
Serbin, S. P., Singh, A., McNeil, B. E., Kingdon, C. C. & Townsend, P. A. Spectroscopic determination of leaf morphological and biochemical traits for northern temperate and boreal tree species. Ecol. Appl. 24, 1651–1669 (2014).
doi: 10.1890/13-2110.1
Fisher, J. B., Perakalapudi, N. V., Turner, B. L., Schimel, D. S. & Cusack, D. F. Sci. Rep. 10, 6725 (2020).
pubmed: 32317766
pmcid: 7174296
doi: 10.1038/s41598-020-63589-1
van der Heijden, M. G. A., Martin, F. M., Selosse, M.-A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 205, 1406–1423 (2015).
pubmed: 25639293
doi: 10.1111/nph.13288
Meireles, J. E., O’Meara, B. & Cavender-Bares, J. in Remote Sensing of Plant Biodiversity (eds. Cavender-Bares, J. et al.) 155–172 (Springer, 2020).
Kothari, S. et al. Community-wide consequences of variation in photoprotective physiology among prairie plants. Photosynthetica 56, 455–467 (2018).
doi: 10.1007/s11099-018-0777-9
Anderegg, L. D. L. et al. Representing plant diversity in land models: an evolutionary approach to make “functional types” more functional. Glob. Change Biol., https://doi.org/10.1111/gcb.16040 (2022).
Cavender-Bares, J. M. et al. Remotely detected aboveground plant function predicts belowground processes in two prairie diversity experiments. Ecol. Monogr., https://doi.org/10.1002/ecm.1488 (2021).
Niemann, K. O., Quinn, G., Stephen, R., Visintini, F. & Parton, D. Hyperspectral remote sensing of mountain pine beetle with an emphasis on previsual assessment. Can. J. Remote Sens. 41, 191–202 (2015).
doi: 10.1080/07038992.2015.1065707
Chu, H. et al. Soil microbial biogeography in a changing world: recent advances and future perspectives. mSystems 5, e00803–e00819 (2020).
King, G. M. Enhancing soil carbon storage for carbon remediation: potential contributions and constraints by microbes. Trends Microbiol. 19, 75–84 (2011).
pubmed: 21167717
doi: 10.1016/j.tim.2010.11.006
Singh, A. K., Sisodia, A., Sisodia, V. & Padhi, M. in New and Future Developments in Microbial Biotechnology and Bioengineering (eds. Singh, J. S. & Singh, D. P.) 57–68 (Elsevier, 2019).
Eviner, V. T. Plant traits that influence ecosystem processes vary independently among species. Ecology 85, 2215–2229 (2004).
doi: 10.1890/03-0405
Cornwell, W. K. et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065–1071 (2008).
pubmed: 18627410
doi: 10.1111/j.1461-0248.2008.01219.x
Paneque-Gálvez, J. et al. High overlap between traditional ecological knowledge and forest conservation found in the Bolivian Amazon. Ambio 47, 908–923 (2018).
pubmed: 29532402
pmcid: 6230329
doi: 10.1007/s13280-018-1040-0
Hilbert, M. The bad news is that the digital access divide is here to stay: domestically installed bandwidths among 172 countries for 1986–2014. Telecommun. Policy 40, 567–581 (2016).
doi: 10.1016/j.telpol.2016.01.006
Prados, A. I. et al. Impact of the ARSET program on use of remote-sensing data. ISPRS Int. J. Geo-Inf. 8, 261 (2019).
Garnett, S. T. et al. A spatial overview of the global importance of Indigenous lands for conservation. Nat. Sustain. 1, 369–374 (2018).
doi: 10.1038/s41893-018-0100-6
Chase, A. S. Z., Chase, D. & Chase, A. Ethics, new colonialism, and lidar data: a decade of lidar in Maya archaeology. J. Comput. Appl. Archaeol. 3, 51–62 (2020).
Carrino, T. A., Crósta, A. P., Toledo, C. L. B. & Silva, A. M. Hyperspectral remote sensing applied to mineral exploration in southern Peru: a multiple data integration approach in the Chapi Chiara gold prospect. Int. J. Appl. Earth Obs. Geoinf. 64, 287–300 (2018).
Scafutto, R. D. P. M., de Souza Filho, C. R. & de Oliveira, W. J. Hyperspectral remote sensing detection of petroleum hydrocarbons in mixtures with mineral substrates: implications for onshore exploration and monitoring. ISPRS J. Photogramm. Remote Sens. 128, 146–157 (2017).
doi: 10.1016/j.isprsjprs.2017.03.009
Turner, W. Sensing biodiversity. Science 346, 301–302 (2014).
pubmed: 25324372
doi: 10.1126/science.1256014
Ustin, S. L. & Middleton, E. M. Current and near-term advances in Earth observation for ecological applications. Ecol. Process. 10, 1 (2021).
Randin, C. F. et al. Monitoring biodiversity in the Anthropocene using remote sensing in species distribution models. Remote Sens. Environ. 239, 111626 (2020).
doi: 10.1016/j.rse.2019.111626
Geller, G. N. et al. in Remote Sensing of Plant Biodiversity (eds. Cavender Bares, J. et al.) 519–526 (Springer, 2020).
Asner, G. P. & Martin, R. E. Spectranomics: emerging science and conservation opportunities at the interface of biodiversity and remote sensing. Glob. Ecol. Conserv. 8, 212–219 (2016).
doi: 10.1016/j.gecco.2016.09.010
Schneider, F. D. et al. Towards mapping the diversity of canopy structure from space with GEDI. Environ. Res. Lett. 15, 115006 (2020).
doi: 10.1088/1748-9326/ab9e99
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
doi: 10.1002/joc.5086
Green, R. O. et al. Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Remote Sens. Environ. 65, 227–248 (1998).
doi: 10.1016/S0034-4257(98)00064-9
Hook, S. & Fisher, J. ECO3ETPTJPL v001 ECOSTRESS Evapotranspiration PT-JPL Daily L3 Global 70 m https://doi.org/10.5067/ECOSTRESS/ECO3ETPTJPL.001 (LP DAAC, accessed 8 December 2021).
Turner, A. J. et al. A double peak in the seasonality of California’s photosynthesis as observed from space. Biogeosciences 17, 405–422 (2020).
doi: 10.5194/bg-17-405-2020
Radeloff, V. C. et al. The Dynamic Habitat Indices (DHIs) from MODIS and global biodiversity. Remote Sens. Environ. 222, 204–214 (2019).
doi: 10.1016/j.rse.2018.12.009
Crameri, F. Scientific colour-maps. Zenodo https://doi.org/10.5281/zenodo.1287763 (2018).
Li, X. & Xiao, J. Mapping photosynthesis solely from solar-induced chlorophyll fluorescence: a global, fine-resolution dataset of gross primary production derived from OCO-2. Remote Sensing 11, 2563 (2019).
Keil, P. & Chase, J. M. Global patterns and drivers of tree diversity integrated across a continuum of spatial grains. Nat. Ecol. Evol. 3, 390–399 (2019).
pubmed: 30778185
doi: 10.1038/s41559-019-0799-0
Simard, M., Pinto, N., Fisher, J. B. & Baccini, A. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. Biogeosci. 116, G04021 (2011).
Boonman, C. C. F. et al. Assessing the reliability of predicted plant trait distributions at the global scale. Glob. Ecol. Biogeogr. 29, 1034–1051 (2020).
pubmed: 32612452
pmcid: 7319484
doi: 10.1111/geb.13086
Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. BioScience 51, 933–938 (2001).
doi: 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
Beck, H. E. et al. Present and future Köppen–Geiger climate classification maps at 1-km resolution. Sci. Data 5, 180214 (2018).
pubmed: 30375988
pmcid: 6207062
doi: 10.1038/sdata.2018.214
Mokany, K. et al. Reconciling global priorities for conserving biodiversity habitat. Proc. Natl Acad. Sci. USA 117, 9906 (2020).
pubmed: 32317385
pmcid: 7211919
doi: 10.1073/pnas.1918373117
Lausch, A. et al. Linking Earth Observation and taxonomic, structural and functional biodiversity: local to ecosystem perspectives. Ecol. Indic. 70, 317–339 (2016).
doi: 10.1016/j.ecolind.2016.06.022
Schneider, F. D. et al. Mapping functional diversity from remotely sensed morphological and physiological forest traits. Nat. Commun. 8, 1441 (2017).
pubmed: 29129931
pmcid: 5682291
doi: 10.1038/s41467-017-01530-3
Rocchini, D. et al. Remotely sensed spectral heterogeneity as a proxy of species diversity: recent advances and open challenges. Ecol. Inform. 5, 318–329 (2010).
doi: 10.1016/j.ecoinf.2010.06.001
Schneider, F. D., Ferraz, A. & Schimel, D. Watching Earth’s interconnected systems at work. Eos, https://doi.org/10.1029/2019EO136205 (2019).
Laliberté, E., Schweiger, A. K. & Legendre, P. Partitioning plant spectral diversity into alpha and beta components. Ecol. Lett. 23, 370–380 (2020).
pubmed: 31773839
doi: 10.1111/ele.13429
Wang, R. & Gamon, J. A. Remote sensing of terrestrial plant biodiversity. Remote Sens. Environ. 231, 111218 (2019).
doi: 10.1016/j.rse.2019.111218
Féret, J.-B. & Asner, G. P. Mapping tropical forest canopy diversity using high-fidelity imaging spectroscopy. Ecol. Appl. 24, 1289–1296 (2014).
pubmed: 29160652
doi: 10.1890/13-1824.1
Dubayah, R. et al. The Global Ecosystem Dynamics Investigation: high-resolution laser ranging of the Earth’s forests and topography. Sci. Remote Sens. 1, 100002 (2020).
doi: 10.1016/j.srs.2020.100002
Omasa, K., Hosoi, F. & Konishi, A. 3D lidar imaging for detecting and understanding plant responses and canopy structure. J. Exp. Bot. 58, 881–898 (2007).
pubmed: 17030540
doi: 10.1093/jxb/erl142
Bae, S. et al. Radar vision in the mapping of forest biodiversity from space. Nat. Commun. 10, 4757 (2019).
pubmed: 31628336
pmcid: 6802221
doi: 10.1038/s41467-019-12737-x
Stavros, E. N. et al. ISS observations offer insights into plant function. Nat. Ecol. Evol. 1, 0194 (2017).
Turner, W. et al. Free and open-access satellite data are key to biodiversity conservation. Biol. Conserv. 182, 173–176 (2015).
doi: 10.1016/j.biocon.2014.11.048
Pereira, H. M. et al. Essential biodiversity variables. Science 339, 277–278 (2013).
pubmed: 23329036
doi: 10.1126/science.1229931
Jetz, W. et al. Essential biodiversity variables for mapping and monitoring species populations. Nat. Ecol. Evol. 3, 539–551 (2019).
pubmed: 30858594
doi: 10.1038/s41559-019-0826-1
Kissling, W. D. et al. Towards global data products of essential biodiversity variables on species traits. Nat. Ecol. Evol. 2, 1531–1540 (2018).
pubmed: 30224814
doi: 10.1038/s41559-018-0667-3
Kissling, W. D. et al. Building essential biodiversity variables (EBVs) of species distribution and abundance at a global scale. Biol. Rev. 93, 600–625 (2018).
pubmed: 28766908
doi: 10.1111/brv.12359
Kays, R., Crofoot, M. C., Jetz, W. & Wikelski, M. Terrestrial animal tracking as an eye on life and planet. Science 348, aaa2478 (2015).
pubmed: 26068858
doi: 10.1126/science.aaa2478
Fretwell, P. T. & Trathan, P. N. Penguins from space: faecal stains reveal the location of emperor penguin colonies. Glob. Ecol. Biogeogr. 18, 543–552 (2009).
doi: 10.1111/j.1466-8238.2009.00467.x
Davies, A. B. & Asner, G. P. Advances in animal ecology from 3D-LiDAR ecosystem mapping. Trends Ecol. Evol. 29, 681–691 (2014).
pubmed: 25457158
doi: 10.1016/j.tree.2014.10.005
Paz, A. et al. in Remote Sensing of Plant Biodiversity (eds. Cavender-Bares, J. et al.) 255–266 (Springer International Publishing, 2020).
Pinto-Ledezma, J. N. & Cavender-Bares, J. Predicting species distributions and community composition using satellite remote sensing predictors. Sci. Rep. 11, 16448 (2021).
pubmed: 34385574
pmcid: 8361206
doi: 10.1038/s41598-021-96047-7
Papeş, M., Tupayachi, R., Martínez, P., Peterson, A. T. & Powell, G. V. N. Using hyperspectral satellite imagery for regional inventories: a test with tropical emergent trees in the Amazon Basin. J. Veg. Sci. 21, 342–354 (2010).
doi: 10.1111/j.1654-1103.2009.01147.x
Wang, Z. et al. Mapping foliar functional traits and their uncertainties across three years in a grassland experiment. Remote Sens. Environ. 221, 405–416 (2019).
doi: 10.1016/j.rse.2018.11.016