Structure of the human GlcNAc-1-phosphotransferase αβ subunits reveals regulatory mechanism for lysosomal enzyme glycan phosphorylation.


Journal

Nature structural & molecular biology
ISSN: 1545-9985
Titre abrégé: Nat Struct Mol Biol
Pays: United States
ID NLM: 101186374

Informations de publication

Date de publication:
04 2022
Historique:
received: 01 09 2021
accepted: 16 02 2022
pubmed: 26 3 2022
medline: 19 4 2022
entrez: 25 3 2022
Statut: ppublish

Résumé

Vertebrates use the mannose 6-phosphate (M6P)-recognition system to deliver lysosomal hydrolases to lysosomes. Key to this pathway is N-acetylglucosamine (GlcNAc)-1-phosphotransferase (PTase) that selectively adds GlcNAc-phosphate (P) to mannose residues of hydrolases. Human PTase is an α

Identifiants

pubmed: 35332324
doi: 10.1038/s41594-022-00748-0
pii: 10.1038/s41594-022-00748-0
pmc: PMC9018626
mid: NIHMS1786738
doi:

Substances chimiques

Phosphates 0
Polysaccharides 0
Phosphotransferases EC 2.7.-
Hydrolases EC 3.-
Mannose PHA4727WTP

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

348-356

Subventions

Organisme : NCI NIH HHS
ID : R01 CA008759
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA231466
Pays : United States

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.

Références

Braulke, T. & Bonifacino, J. S. Sorting of lysosomal proteins. Biochim. Biophys. Acta 1793, 605–614 (2009).
doi: 10.1016/j.bbamcr.2008.10.016 pubmed: 19046998
Burda, P. & Aebi, M. The dolichol pathway of N-linked glycosylation. Biochim. Biophys. Acta 1426, 239–257 (1999).
doi: 10.1016/S0304-4165(98)00127-5 pubmed: 9878760
Bai, L. & Li, H. Cryo-EM is uncovering the mechanism of eukaryotic protein N-glycosylation. FEBS J. 286, 1638–1644 (2019).
doi: 10.1111/febs.14705 pubmed: 30450807
Kudo, M. et al. The α- and β-subunits of the human UDP-N-acetylglucosamine:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase [corrected] are encoded by a single cDNA. J. Biol. Chem. 280, 36141–36149 (2005).
doi: 10.1074/jbc.M509008200 pubmed: 16120602
Raas-Rothschild, A. et al. Molecular basis of variant pseudo-Hurler polydystrophy (mucolipidosis IIIC). J. Clin. Invest. 105, 673–681 (2000).
doi: 10.1172/JCI5826 pubmed: 10712439 pmcid: 289169
Sperisen, P., Schmid, C. D., Bucher, P. & Zilian, O. Stealth proteins: in silico identification of a novel protein family rendering bacterial pathogens invisible to host immune defense. PLoS Comput. Biol. 1, e63 (2005).
doi: 10.1371/journal.pcbi.0010063 pubmed: 16299590 pmcid: 1285062
Qian, Y. et al. Functions of the α, β, and γ subunits of UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase. J. Biol. Chem. 285, 3360–3370 (2010).
doi: 10.1074/jbc.M109.068650 pubmed: 19955174
Marschner, K., Kollmann, K., Schweizer, M., Braulke, T. & Pohl, S. A key enzyme in the biogenesis of lysosomes is a protease that regulates cholesterol metabolism. Science 333, 87–90 (2011).
doi: 10.1126/science.1205677 pubmed: 21719679
Braulke, T., Pohl, S. & Storch, S. Molecular analysis of the GlcNac-1-phosphotransferase. J. Inherit. Metab. Dis. 31, 253–257 (2008).
doi: 10.1007/s10545-008-0862-5 pubmed: 18425436
Qian, Y. et al. Analysis of mucolipidosis II/III GNPTAB missense mutations identifies domains of UDP-GlcNAc:lysosomal enzyme GlcNAc-1-phosphotransferase involved in catalytic function and lysosomal enzyme recognition. J. Biol. Chem. 290, 3045–3056 (2015).
doi: 10.1074/jbc.M114.612507 pubmed: 25505245
Liu, L., Lee, W. S., Doray, B. & Kornfeld, S. Role of spacer-1 in the maturation and function of GlcNAc-1-phosphotransferase. FEBS Lett. 591, 47–55 (2017).
doi: 10.1002/1873-3468.12525 pubmed: 27981560 pmcid: 5235957
Qian, Y., Flanagan-Steet, H., van Meel, E., Steet, R. & Kornfeld, S. A. The DMAP interaction domain of UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase is a substrate recognition module. Proc. Natl Acad. Sci. USA 110, 10246–10251 (2013).
doi: 10.1073/pnas.1308453110 pubmed: 23733939 pmcid: 3690890
van Meel, E. et al. Multiple domains of GlcNAc-1-phosphotransferase mediate recognition of lysosomal enzymes. J. Biol. Chem. 291, 8295–8307 (2016).
doi: 10.1074/jbc.M116.714568 pubmed: 26833567 pmcid: 4825028
De Pace, R. et al. Subunit interactions of the disease-related hexameric GlcNAc-1-phosphotransferase complex. Hum. Mol. Genet. 24, 6826–6835 (2015).
doi: 10.1093/hmg/ddv387 pubmed: 26385638
Velho, R. V., De Pace, R., Tidow, H., Braulke, T. & Pohl, S. Identification of the interaction domains between α- and γ-subunits of GlcNAc-1-phosphotransferase. FEBS Lett. 590, 4287–4295 (2016).
doi: 10.1002/1873-3468.12456 pubmed: 27736005
Liu, L., Lee, W. S., Doray, B. & Kornfeld, S. Engineering of GlcNAc-1-phosphotransferase for production of highly phosphorylated lysosomal enzymes for enzyme replacement therapy. Mol. Ther. Methods Clin. Dev. 5, 59–65 (2017).
doi: 10.1016/j.omtm.2017.03.006 pubmed: 28480305 pmcid: 5415318
Boustany, R. M. Lysosomal storage diseases—the horizon expands. Nat. Rev. Neurol. 9, 583–598 (2013).
doi: 10.1038/nrneurol.2013.163 pubmed: 23938739
Velho, R. V. et al. The lysosomal storage disorders mucolipidosis type II, type III α/β, and type III γ: update on GNPTAB and GNPTG mutations. Hum. Mutat. 40, 842–864 (2019).
pubmed: 30882951
Appelqvist, H., Waster, P., Kagedal, K. & Ollinger, K. The lysosome: from waste bag to potential therapeutic target. J. Mol. Cell Biol. 5, 214–226 (2013).
doi: 10.1093/jmcb/mjt022 pubmed: 23918283
Marques, A. R. A. & Saftig, P. Lysosomal storage disorders—challenges, concepts and avenues for therapy: beyond rare diseases. J Cell Sci. 132, jcs221739 (2019).
Kudo, M. & Canfield, W. M. Structural requirements for efficient processing and activation of recombinant human UDP-N-acetylglucosamine:lysosomal-enzyme-N-acetylglucosamine-1-phosphotransferase. J. Biol. Chem. 281, 11761–11768 (2006).
doi: 10.1074/jbc.M513717200 pubmed: 16507578
Tiede, S. et al. Mucolipidosis II is caused by mutations in GNPTA encoding the α/β GlcNAc-1-phosphotransferase. Nat. Med. 11, 1109–1112 (2005).
doi: 10.1038/nm1305 pubmed: 16200072
Wang, Y. et al. Identification of predominant GNPTAB gene mutations in Eastern Chinese patients with mucolipidosis II/III and a prenatal diagnosis of mucolipidosis II. Acta Pharmacol. Sin. 40, 279–287 (2019).
doi: 10.1038/s41401-018-0023-9 pubmed: 29872134
Pedersen, L. C. et al. Crystal structure of an α1,4-N-acetylhexosaminyltransferase (EXTL2), a member of the exostosin gene family involved in heparan sulfate biosynthesis. J. Biol. Chem. 278, 14420–14428 (2003).
doi: 10.1074/jbc.M210532200 pubmed: 12562774
Kitagawa, H., Shimakawa, H. & Sugahara, K. The tumor suppressor EXT-like gene EXTL2 encodes an α1, 4-N-acetylhexosaminyltransferase that transfers N-acetylgalactosamine and N-acetylglucosamine to the common glycosaminoglycan–protein linkage region. The key enzyme for the chain initiation of heparan sulfate. J. Biol. Chem. 274, 13933–13937 (1999).
doi: 10.1074/jbc.274.20.13933 pubmed: 10318803
Tiede, S. et al. Missense mutations in N-acetylglucosamine-1-phosphotransferase α/β subunit gene in a patient with mucolipidosis III and a mild clinical phenotype. Am. J. Med. Genet. A 137A, 235–240 (2005).
doi: 10.1002/ajmg.a.30868 pubmed: 16094673
Punjani, A. & Fleet, D. J. 3D variability analysis: resolving continuous flexibility and discrete heterogeneity from single particle cryo-EM. J. Struct. Biol. 213, 107702 (2021).
doi: 10.1016/j.jsb.2021.107702 pubmed: 33582281
Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).
doi: 10.1038/nmeth.4193 pubmed: 28250466 pmcid: 5494038
Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).
doi: 10.1016/j.jsb.2015.08.008 pubmed: 26278980 pmcid: 6760662
Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).
doi: 10.1038/nmeth.4169 pubmed: 28165473
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).
doi: 10.1107/S0907444910007493 pubmed: 20383002 pmcid: 2852313
Buchan, D. W. A. & Jones, D. T. The PSIPRED Protein Analysis Workbench: 20 years on. Nucleic Acids Res. 47, W402–W407 (2019).
doi: 10.1093/nar/gkz297 pubmed: 31251384 pmcid: 6602445
Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 75, 861–877 (2019).
doi: 10.1107/S2059798319011471 pubmed: 31588918 pmcid: 6778852
Williams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018).
doi: 10.1002/pro.3330 pubmed: 29067766
Robert, X. & Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 42, W320–W324 (2014).
doi: 10.1093/nar/gku316 pubmed: 24753421 pmcid: 4086106
Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2017).

Auteurs

Hua Li (H)

Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA.

Wang-Sik Lee (WS)

Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA.

Xiang Feng (X)

Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA.

Lin Bai (L)

Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA.
Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing, China.

Benjamin C Jennings (BC)

Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA.

Lin Liu (L)

Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA.
M6P Therapeutics, St. Louis, MO, USA.

Balraj Doray (B)

Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA.

William M Canfield (WM)

Siwa Biotech Corp., Oklahoma City, OK, USA.

Stuart Kornfeld (S)

Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA. skornfel@wustl.edu.

Huilin Li (H)

Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA. huilin.li@vai.org.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH