Comprehensive variant spectrum of the CNGA3 gene in patients affected by achromatopsia.

CNGA3 achromatopsia cyclic nucleotide-gated ion channel in silico analysis variant classification variant spectrum

Journal

Human mutation
ISSN: 1098-1004
Titre abrégé: Hum Mutat
Pays: United States
ID NLM: 9215429

Informations de publication

Date de publication:
07 2022
Historique:
revised: 23 02 2022
received: 13 08 2021
accepted: 22 03 2022
pubmed: 26 3 2022
medline: 10 6 2022
entrez: 25 3 2022
Statut: ppublish

Résumé

Achromatopsia (ACHM) is a congenital cone photoreceptor disorder characterized by impaired color discrimination, low visual acuity, photosensitivity, and nystagmus. To date, six genes have been associated with ACHM (CNGA3, CNGB3, GNAT2, PDE6C, PDE6H, and ATF6), the majority of these being implicated in the cone phototransduction cascade. CNGA3 encodes the CNGA3 subunit of the cyclic nucleotide-gated ion channel in cone photoreceptors and is one of the major disease-associated genes for ACHM. Herein, we provide a comprehensive overview of the CNGA3 variant spectrum in a cohort of 1060 genetically confirmed ACHM patients, 385 (36.3%) of these carrying "likely disease-causing" variants in CNGA3. Compiling our own genetic data with those reported in the literature and in public databases, we further extend the CNGA3 variant spectrum to a total of 316 variants, 244 of which we interpreted as "likely disease-causing" according to ACMG/AMP criteria. We report 48 novel "likely disease-causing" variants, 24 of which are missense substitutions underlining the predominant role of this mutation class in the CNGA3 variant spectrum. In addition, we provide extensive in silico analyses and summarize reported functional data of previously analyzed missense, nonsense and splicing variants to further advance the pathogenicity assessment of the identified variants.

Identifiants

pubmed: 35332618
doi: 10.1002/humu.24371
doi:

Substances chimiques

CNGA3 protein, human 0
Cyclic Nucleotide-Gated Cation Channels 0

Types de publication

Journal Article Review Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

832-858

Subventions

Organisme : NEI NIH HHS
ID : R24 EY028758
Pays : United States
Organisme : NEI NIH HHS
ID : R01 EY018213
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA013696
Pays : United States
Organisme : NIA NIH HHS
ID : R21 AG050437
Pays : United States
Organisme : NEI NIH HHS
ID : U01 EY030580
Pays : United States
Organisme : NEI NIH HHS
ID : R24 EY027285
Pays : United States
Organisme : NIH HHS
ID : U54 OD020351
Pays : United States
Organisme : NEI NIH HHS
ID : R01 EY033770
Pays : United States
Organisme : NEI NIH HHS
ID : R01 EY024698
Pays : United States

Informations de copyright

© 2022 The Authors. Human Mutation published by Wiley Periodicals LLC.

Références

Abdelkader, E., Brandau, O., Bergmann, C., AlSalamah, N., Nowilaty, S., & Schatz, P. (2018). Novel causative variants in patients with achromatopsia. Ophthalmic Genetics, 39(6), 678-683. https://doi.org/10.1080/13816810.2018.1522653
Abouelhoda, M., Sobahy, T., El-Kalioby, M., Patel, N., Shamseldin, H., Monies, D., Al-Tassan, N., Ramzan, K., Imtiaz, F., Shaheen, R., & Alkuraya, F. S. (2016). Clinical genomics can facilitate countrywide estimation of autosomal recessive disease burden. Genetics in Medicine, 18(12), 1244-1249. https://doi.org/10.1038/gim.2016.37
Ahuja, Y., Kohl, S., & Traboulsi, E. I. (2008). CNGA3 mutations in two United Arab Emirates families with achromatopsia. Molecular Vision, 14, 1293-1297.
Aligianis, I. A., Forshew, T., Johnson, S., Michaelides, M., Johnson, C. A., Trembath, R. C., & Maher, E. R. (2002). Mapping of a novel locus for achromatopsia (ACHM4) to 1p and identification of a germline mutation in the alpha subunit of cone transducin (GNAT2). Journal of Medical Genetics, 39(9), 656-660. https://doi.org/10.1136/jmg.39.9.656
Ansar, M., Santos-Cortez, R. L., Saqib, M. A., Zulfiqar, F., Lee, K., Ashraf, N. M., & Leal, S. M. (2015). Mutation of ATF6 causes autosomal recessive achromatopsia. Human Genetics, 134(9), 941-950. https://doi.org/10.1007/s00439-015-1571-4
Arshad, M. W., Lee, Y., Malik, M. A., Khan, J., Khan, A., Kareem, A., Kang, C., & Shabbir, M. I. (2019). Identification of novel mutation in CNGA3 gene by whole-exome sequencing and in-silico analyses for genotype-phenotype assessment with autosomal recessive achromatopsia in Pakistani families. The Journal of the Pakistan Medical Association, 69(2), 183-189.
Azam, M., Collin, R. W., Shah, S. T., Shah, A. A., Khan, M. I., Hussain, A., Sadeque, A., Strom, T. M., Thiadens, A. A., Roosing, S., den Hollander, A. I., Cremers, F. P., & Qamar, R. (2010). Novel CNGA3 and CNGB3 mutations in two Pakistani families with achromatopsia. Molecular Vision, 16, 774-781.
Barret, D. C. A., Schertler, G. F. X., Benjamin Kaupp, U., & Marino, J. (2022). The structure of the native CNGA1/CNGB1 CNG channel from bovine retinal rods. Nature Structural & Molecular Biology, 29(1), 32-39. https://doi.org/10.1038/s41594-021-00700-8
Biel, M., & Michalakis, S. (2009). Cyclic nucleotide-gated channels. Handbook of Experimental Pharmacology, 191, 111-136. https://doi.org/10.1007/978-3-540-68964-5_7
Biel, M., Seeliger, M., Pfeifer, A., Kohler, K., Gerstner, A., Ludwig, A., & Hofmann, F. (1999). Selective loss of cone function in mice lacking the cyclic nucleotide-gated channel CNG3. Proceedings of the National Academy of Sciences of the United States of America, 96(13), 7553-7557. https://doi.org/10.1073/pnas.96.13.7553
Burkard, M., Kohl, S., Kratzig, T., Tanimoto, N., Brennenstuhl, C., Bausch, A. E., & Ruth, P. (2018). Accessory heterozygous mutations in cone photoreceptor CNGA3 exacerbate CNG channel-associated retinopathy. Journal of Clinical Investigation, 128(12), 5663-5675. https://doi.org/10.1172/JCI96098
Burgueño-Montañés, C., Colunga Cueva, M., & Costales Álvarez, C. (2014). Una nueva mutación en el gen CNGA3 causante de acromatopsia incompleta. Archivos de La Sociedad Española de Oftalmología, 89(3), 107-109. https://doi.org/10.1016/j.oftal.2012.07.019
Carrigan, M., Duignan, E., Malone, C. P. G., Stephenson, K., Saad, T., McDermott, C., Green, A., Keegan, D., Humphries, P., Kenna, P. F., & Farrar, G. J. (2016). Panel-based population next-generation sequencing for inherited retinal degenerations. Scientific Reports, 6(1), 33248. https://doi.org/10.1038/srep33248
Carss, K. J., Arno, G., Erwood, M., Stephens, J., Sanchis-Juan, A., Hull, S., Megy, K., Grozeva, D., Dewhurst, E., Malka, S., Plagnol, V., Penkett, C., Stirrups, K., Rizzo, R., Wright, G., Josifova, D., Bitner-Glindzicz, M., Scott, R. H., Clement, E., & Yu, P. (2017). Comprehensive rare variant analysis via whole-genome sequencing to determine the molecular pathology of inherited retinal disease. The American Journal of Human Genetics, 100(1), 75-90. https://doi.org/10.1016/j.ajhg.2016.12.003
Chang, B., Grau, T., Dangel, S., Hurd, R., Jurklies, B., Sener, E. C., & Wissinger, B. (2009). A homologous genetic basis of the murine cpfl1 mutant and human achromatopsia linked to mutations in the PDE6C gene. Proceedings of the National Academy of Sciences of the United States of America, 106(46), 19581-19586. https://doi.org/10.1073/pnas.0907720106
Dai, G., Peng, C., Liu, C., & Varnum, M. D. (2013). Two structural components in CNGA3 support regulation of cone CNG channels by phosphoinositides. Journal of General Physiology, 141(4), 413-430. https://doi.org/10.1085/jgp.201210944
Dai, G., & Varnum, M. D. (2013). CNGA3 achromatopsia-associated mutation potentiates the phosphoinositide sensitivity of cone photoreceptor CNG channels by altering intersubunit interactions. American Journal of Physiology: Cell Physiology, 305(2), C147-C159. https://doi.org/10.1152/ajpcell.00037.2013
Dubis, A. M., Cooper, R. F., Aboshiha, J., Langlo, C. S., Sundaram, V., Liu, B., Collison, F., Fishman, G. A., Moore, A. T., Webster, A. R., Dubra, A., Carroll, J., & Michaelides, M. (2014). Genotype-dependent variability in residual cone structure in achromatopsia: Toward developing metrics for assessing cone health. Investigative Opthalmology & Visual Science, 55(11), 7303-7311. https://doi.org/10.1167/iovs.14-14225
Duricka, D. L., Brown, R. L., & Varnum, M. D. (2012). Defective trafficking of cone photoreceptor CNG channels induces the unfolded protein response and ER-stress-associated cell death. Biochemical Journal, 441(2), 685-696. https://doi.org/10.1042/BJ20111004
Ellingford, J. M., Barton, S., Bhaskar, S., O'Sullivan, J., Williams, S. G., Lamb, J. A., Panda, B., Sergouniotis, P. I., Gillespie, R. L., Daiger, S. P., Hall, G., Gale, T., Lloyd, I. C., Bishop, P. N., Ramsden, S. C., & Black, G. C. M. (2016). Molecular findings from 537 individuals with inherited retinal disease. Journal of Medical Genetics, 53(11), 761-767. https://doi.org/10.1136/jmedgenet-2016-103837
Ezquerra-Inchausti, M., Anasagasti, A., Barandika, O., Garay-Aramburu, G., Galdós, M., López de Munain, A., Irigoyen, C., & Ruiz-Ederra, J. (2018). A new approach based on targeted pooled DNA sequencing identifies novel mutations in patients with Inherited Retinal Dystrophies. Scientific Reports, 8(1)​. https://doi.org/10.1038/s41598-018-33810-3
Ezra-Elia, R., Banin, E., Honig, H., Rosov, A., Obolensky, A., Averbukh, E., & Ofri, R. (2014). Flicker cone function in normal and day blind sheep: A large animal model for human achromatopsia caused by CNGA3 mutation. Documenta Ophthalmologica, 129(3), 141-150. https://doi.org/10.1007/s10633-014-9458-6
Fahim, A. T., Khan, N. W., Zahid, S., Schachar, I. H., Branham, K., Kohl, S., Wissinger, B., Elner, V. M., Heckenlively, J. R., & Jayasundera, T. (2013). Diagnostic fundus autofluorescence patterns in achromatopsia. American Journal of Ophthalmology, 156(6), 1211-1219. https://doi.org/10.1016/j.ajo.2013.06.033
Felden, J., Baumann, B., Ali, M., Audo, I., Ayuso, C., Bocquet, B., & Kohl, S. (2019). Mutation spectrum and clinical investigation of achromatopsia patients with mutations in the GNAT2 gene. Human Mutation, 40(8), 1145-1155. https://doi.org/10.1002/humu.23768
Fischer, M. D., Michalakis, S., Wilhelm, B., Zobor, D., Muehlfriedel, R., Kohl, S., & Wissinger, B. (2020). Safety and vision outcomes of subretinal gene therapy targeting cone photoreceptors in achromatopsia: A nonrandomized controlled trial. JAMA Ophthalmol, 138(6), 643-651. https://doi.org/10.1001/jamaophthalmol.2020.1032
François, J. (1961). Heredity in ophthalmology. Mosby.
Georgiou, M., Litts, K. M., Kalitzeos, A., Langlo, C. S., Kane, T., Singh, N., Kassilian, M., Hirji, N., Kumaran, N., Dubra, A., Carroll, J., & Michaelides, M. (2019). Adaptive optics retinal imaging in CNGA3-associated achromatopsia: Retinal characterization, interocular symmetry, and intrafamilial variability. Investigative Opthalmology & Visual Science, 60(1), 383. https://doi.org/10.1167/iovs.18-25880
Genead, M. A., Fishman, G. A., Rha, J., Dubis, A. M., Bonci, D. M. O., Dubra, A., Stone, E. M., Neitz, M., & Carroll, J. (2011). Photoreceptor structure and function in patients with congenital achromatopsia. Investigative Opthalmology & Visual Science, 52(10), 7298-7308. https://doi.org/10.1167/iovs.11-7762
Georgiou, M., Singh, N., Kane, T., Zaman, S., Hirji, N., Aboshiha, J., & Michaelides, M. (2020). Long-term investigation of retinal function in patients with achromatopsia. Investigative Ophthalmology and Visual Science, 61(11), 38. https://doi.org/10.1167/iovs.61.11.38
Gofman, Y., Scharfe, C., Marks, D. S., Haliloglu, T., & Ben-Tal, N. (2014). Structure, dynamics and implied gating mechanism of a human cyclic nucleotide-gated channel. PLoS Computational Biology, 10(12), e1003976. https://doi.org/10.1371/journal.pcbi.1003976
Gootwine, E., Abu-Siam, M., Obolensky, A., Rosov, A., Honig, H., Nitzan, T., & Seroussi, E. (2017). Gene augmentation therapy for a missense substitution in the cGMP-binding domain of ovine CNGA3 gene restores vision in day-blind sheep. Investigative Ophthalmology and Visual Science, 58(3), 1577-1584. https://doi.org/10.1167/iovs.16-20986
Goto-Omoto, S., Hayashi, T., Gekka, T., Kubo, A., Takeuchi, T., & Kitahara, K. (2006). Compound heterozygous CNGA3 mutations (R436W, L633P) in a Japanese patient with congenital achromatopsia. Visual Neuroscience, 23(3-4), 395-402. https://doi.org/10.1017/s095252380623308x
Grantham, R. (1974). Amino acid difference formula to help explain protein evolution. Science, 185(4154), 862-864. https://doi.org/10.1126/science.185.4154.862
Greenberg, J. P., Sherman, J., Zweifel, S. A., Chen, R. W. S., Duncker, T., Kohl, S., Baumann, B., Wissinger, B., Yannuzzi, L. A., & Tsang, S. H. (2014). Spectral-domain optical coherence tomography staging and autofluorescence imaging in achromatopsia. JAMA Ophthalmology, 132(4), 437-445. https://doi.org/10.1001/jamaophthalmol.2013.7987
Hirji, N., Aboshiha, J., Georgiou, M., Bainbridge, J., & Michaelides, M. (2018). Achromatopsia: Clinical features, molecular genetics, animal models and therapeutic options. Ophthalmic Genetics, 39(2), 149-157. https://doi.org/10.1080/13816810.2017.1418389
Holtan, J. P., Selmer, K. K., Heimdal, K. R., & Bragadóttir, R. (2020). Inherited retinal disease in Norway - A characterization of current clinical and genetic knowledge. Acta Ophthalmologica, 98(3), 286-295. https://doi.org/10.1111/aos.14218
Huang, L., Xiao, X., Li, S., Jia, X., Wang, P., Sun, W., Xu, Y., Xin, W., Guo, X., & Zhang, Q. (2016). Molecular genetics of cone-rod dystrophy in Chinese patients: New data from 61 probands and mutation overview of 163 probands. Experimental Eye Research, 146, 252-258. https://doi.org/10.1016/j.exer.2016.03.015
Hull, S., Kiray, G., Chiang, J. P., & Vincent, A. L. (2020). Molecular and phenotypic investigation of a New Zealand cohort of childhood-onset retinal dystrophy. American Journal of Medical Genetics Part C: Seminars in Medical Genetics, 184(3), 708-717. https://doi.org/10.1002/ajmg.c.31836
Jacobson, M. A., Jones, L. J., Colussi, D. J., & Tanaka, J. C. (2019). High-throughput Ca(2+) flux assay to monitor cyclic nucleotide-gated channel activity and characterize achromatopsia mutant channel function. ACS Chemical Neuroscience, 10(8), 3662-3670. https://doi.org/10.1021/acschemneuro.9b00231
Jaganathan, K., Kyriazopoulou Panagiotopoulou, S., McRae, J. F., Darbandi, S. F., Knowles, D., Li, Y. I., & Farh, K. K. (2019). Predicting splicing from primary sequence with deep learning. Cell, 176(3), 535-548. https://doi.org/10.1016/j.cell.2018.12.015
Jinda, W., Tuekprakhon, A., Thongnoppakhun, W., Limwongse, C., Trinavarat, A., & Atchaneeyasakul, L. (2021). Molecular and clinical characterization of Thai patients with achromatopsia: Identification of three novel disease-associated variants in the CNGA3 and CNGB3 genes. International Ophthalmology, 41(1), 121-134. https://doi.org/10.1007/s10792-020-01559-2
Johnson, S., Michaelides, M., Aligianis, I. A., Ainsworth, J. R., Mollon, J. D., Maher, E. R., & Hunt, D. M. (2004). Achromatopsia caused by novel mutations in both CNGA3 and CNGB3. Journal of Medical Genetics, 41(2), e20. https://doi.org/10.1136/jmg.2003.011437
Kaupp, U. B., & Seifert, R. (2002). Cyclic nucleotide-gated ion channels. Physiological Reviews, 82(3), 769-824. https://doi.org/10.1152/physrev.00008.2002
Kelbsch, C., Stingl, K., Kempf, M., Strasser, T., Jung, R., Kuehlewein, L., & Stingl, K. (2019). Objective measurement of local rod and cone function using gaze-controlled chromatic pupil campimetry in healthy subjects. Translational Vision Science & Technology, 8(6), 19. https://doi.org/10.1167/tvst.8.6.19
Kim, M. S., Joo, K., Seong, M.-W., Kim, M. J., Park, K. H., Park, S. S., & Woo, S. J. (2019). Genetic mutation profiles in Korean patients with inherited retinal diseases. Journal of Korean Medical Science, 34(21), e161. https://doi.org/10.3346/jkms.2019.34.e161
Kircher, M., Witten, D. M., Jain, P., O'Roak, B. J., Cooper, G. M., & Shendure, J. (2014). A general framework for estimating the relative pathogenicity of human genetic variants. Nature Genetics, 46(3), 310-315. https://doi.org/10.1038/ng.2892
Koch, M., Scheel, C., Ma, H., Yang, F., Stadlmeier, M., Gluck, A. F., & Michalakis, S. (2020). The cGMP-dependent protein kinase 2 contributes to cone photoreceptor degeneration in the Cnga3-deficient mouse model of achromatopsia. International Journal of Molecular Sciences, 22(1)​. https://doi.org/10.3390/ijms22010052
Koeppen, K., Reuter, P., Kohl, S., Baumann, B., Ladewig, T., & Wissinger, B. (2008). Functional analysis of human CNGA3 mutations associated with colour blindness suggests impaired surface expression of channel mutants A3(R427C) and A3(R563C). European Journal of Neuroscience, 27(9), 2391-2401. https://doi.org/10.1111/j.1460-9568.2008.06195.x
Koeppen, K., Reuter, P., Ladewig, T., Kohl, S., Baumann, B., Jacobson, S. G., & Wissinger, B. (2010). Dissecting the pathogenic mechanisms of mutations in the pore region of the human cone photoreceptor cyclic nucleotide-gated channel. Human Mutation, 31(7), 830-839. https://doi.org/10.1002/humu.21283
Kohl, S., Baumann, B., Broghammer, M., Jagle, H., Sieving, P., Kellner, U., & Wissinger, B. (2000). Mutations in the CNGB3 gene encoding the beta-subunit of the cone photoreceptor cGMP-gated channel are responsible for achromatopsia (ACHM3) linked to chromosome 8q21. Human Molecular Genetics, 9(14), 2107-2116. https://doi.org/10.1093/hmg/9.14.2107
Kohl, S., Baumann, B., Rosenberg, T., Kellner, U., Lorenz, B., Vadala, M., & Wissinger, B. (2002). Mutations in the cone photoreceptor G-protein alpha-subunit gene GNAT2 in patients with achromatopsia. American Journal of Human Genetics, 71(2), 422-425. https://doi.org/10.1086/341835
Kohl, S., Coppieters, F., Meire, F., Schaich, S., Roosing, S., Brennenstuhl, C., & Wissinger, B. (2012). A nonsense mutation in PDE6H causes autosomal-recessive incomplete achromatopsia. American Journal of Human Genetics, 91(3), 527-532. https://doi.org/10.1016/j.ajhg.2012.07.006
Kohl, S., Marx, T., Giddings, I., Jagle, H., Jacobson, S. G., Apfelstedt-Sylla, E., & Wissinger, B. (1998). Total colourblindness is caused by mutations in the gene encoding the alpha-subunit of the cone photoreceptor cGMP-gated cation channel. Nature Genetics, 19(3), 257-259. https://doi.org/10.1038/935
Kohl, S., Zobor, D., Chiang, W. C., Weisschuh, N., Staller, J., Gonzalez Menendez, I., & Lin, J. H. (2015). Mutations in the unfolded protein response regulator ATF6 cause the cone dysfunction disorder achromatopsia. Nature Genetics, 47(7), 757-765. https://doi.org/10.1038/ng.3319
Kumar, P., Henikoff, S., & Ng, P. C. (2009). Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nature Protocols, 4(7), 1073-1081. https://doi.org/10.1038/nprot.2009.86
Kuniyoshi, K., Muraki-Oda, S., Ueyama, H., Toyoda, F., Sakuramoto, H., Ogita, H., & Shimomura, Y. (2016). Novel mutations in the gene for alpha-subunit of retinal cone cyclic nucleotide-gated channels in a Japanese patient with congenital achromatopsia. Japanese Journal of Ophthalmology, 60(3), 187-197. https://doi.org/10.1007/s10384-016-0424-6
Lam, K., Guo, H., Wilson, G. A., Kohl, S., & Wong, F. (2011). Identification of variants in CNGA3 as cause for achromatopsia by exome sequencing of a single patient. Archives of Ophthalmology, 129(9), 1212-1217. https://doi.org/10.1001/archophthalmol.2011.254
Landrum, M. J., Lee, J. M., Riley, G. R., Jang, W., Rubinstein, W. S., Church, D. M., & Maglott, D. R. (2014). ClinVar: Public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res, 42(Database issue), D980-D985. https://doi.org/10.1093/nar/gkt1113
Lee, E. J., Chiang, W. J., Kroeger, H., Bi, C. X., Chao, D. L., Skowronska-Krawczyk, D., & Lin, J. H. (2020). Multiexon deletion alleles of ATF6 linked to achromatopsia. JCI Insight, 5(7), e136041. https://doi.org/10.1172/jci.insight.136041
Li, L., Chen, Y., Jiao, X., Jin, C., Jiang, D., Tanwar, M., Ma, Z., Huang, L., Ma, X., Sun, W., Chen, J., Ma, Y., M'hamdi, O., Govindarajan, G., Cabrera, P. E., Li, J., Gupta, N., Naeem, M. A., Khan, S. N., & Hejtmancik, J. F. (2017). Homozygosity mapping and genetic analysis of autosomal recessive retinal dystrophies in 144 consanguineous Pakistani families. Investigative Opthalmology & Visual Science, 58(4), 2218-2238. https://doi.org/10.1167/iovs.17-21424
Li, F.-F., Huang, X.-F., Chen, J., Yu, X.-D., Zheng, M.-Q., Lu, F., Jin, Z.-B., & Gan, D.-K. (2015). Identification of novel mutations by targeted exome sequencing and the genotype-phenotype assessment of patients with achromatopsia. Journal of Translational Medicine, 13(1), 334. https://doi.org/10.1186/s12967-015-0694-7
Li, S., Huang, L., Xiao, X., Jia, X., Guo, X., & Zhang, Q. (2014). Identification of CNGA3 mutations in 46 families: Common cause of achromatopsia and cone-rod dystrophies in Chinese patients. JAMA Ophthalmology, 132(9), 1076-1083. https://doi.org/10.1001/jamaophthalmol.2014.1032
Liang, X., Dong, F., Li, H., Li, H., Yang, L., & Sui, R. (2015). Novel CNGA3 mutations in Chinese patients with achromatopsia. British Journal of Ophthalmology, 99(4), 571-576. https://doi.org/10.1136/bjophthalmol-2014-305432
Lisowska, J., Lisowski, L., Kelbsch, C., Maeda, F., Richter, P., Kohl, S., & Consortium, R.-C. (2017). Development of a Chromatic Pupillography Protocol for the First Gene Therapy Trial in Patients With CNGA3-Linked Achromatopsia. Investigative Ophthalmology and Visual Science, 58(2), 1274-1282. https://doi.org/10.1167/iovs.16-20505
Liu, C., & Varnum, M. D. (2005). Functional consequences of progressive cone dystrophy-associated mutations in the human cone photoreceptor cyclic nucleotide-gated channel CNGA3 subunit. American Journal of Physiology: Cell Physiology, 289(1), C187-C198. https://doi.org/10.1152/ajpcell.00490.2004
Maguire, J., McKibbin, M., Khan, K., Kohl, S., Ali, M., & McKeefry, D. (2018). CNGB3 mutations cause severe rod dysfunction. Ophthalmic Genetics, 39(1), 108-114. https://doi.org/10.1080/13816810.2017.1368087
Matveev, A. V., Fitzgerald, J. B., Xu, J., Malykhina, A. P., Rodgers, K. K., & Ding, X. Q. (2010). The disease-causing mutations in the carboxyl terminus of the cone cyclic nucleotide-gated channel CNGA3 subunit alter the local secondary structure and interfere with the channel active conformational change. Biochemistry, 49(8), 1628-1639. https://doi.org/10.1021/bi901960u
Mayer, A. K., Van Cauwenbergh, C., Rother, C., Baumann, B., Reuter, P., De Baere, E., & Group, A. S. (2017). CNGB3 mutation spectrum including copy number variations in 552 achromatopsia patients. Human Mutation, 38(11), 1579-1591. https://doi.org/10.1002/humu.23311
Meighan, P. C., Peng, C., & Varnum, M. D. (2015). Inherited macular degeneration-associated mutations in CNGB3 increase the ligand sensitivity and spontaneous open probability of cone cyclic nucleotide-gated channels. Frontiers in Physiology, 6, 177. https://doi.org/10.3389/fphys.2015.00177
Méjécase, C., Hummel, A., Mohand-Saïd, S., Andrieu, C., El Shamieh, S., Antonio, A., Condroyer, C., Boyard, F., Foussard, M., Blanchard, S., Letexier, M., Saraiva, J.-P., Sahel, J.-A., Zeitz, C., & Audo, I. (2019). Whole exome sequencing resolves complex phenotype and identifies CC2D2A mutations underlying non-syndromic rod-cone dystrophy. Clinical Genetics, 95(2), 329-333. https://doi.org/10.1111/cge.13453
Michalakis, S., Schon, C., Becirovic, E., & Biel, M. (2017). Gene therapy for achromatopsia. Journal of Gene Medicine, 19(3), e2944. https://doi.org/10.1002/jgm.2944
Muraki-Oda, S., Toyoda, F., Okada, A., Tanabe, S., Yamade, S., Ueyama, H., & Ohji, M. (2007). Functional analysis of rod monochromacy-associated missense mutations in the CNGA3 subunit of the cone photoreceptor cGMP-gated channel. Biochemical and Biophysical Research Communications, 362(1), 88-93. https://doi.org/10.1016/j.bbrc.2007.07.152
Nishiguchi, K. M., Sandberg, M. A., Gorji, N., Berson, E. L., & Dryja, T. P. (2005). Cone cGMP-gated channel mutations and clinical findings in patients with achromatopsia, macular degeneration, and other hereditary cone diseases. Human Mutation, 25(3), 248-258. https://doi.org/10.1002/humu.20142
Pang, J. J., Deng, W. T., Dai, X., Lei, B., Everhart, D., Umino, Y., & Hauswirth, W. W. (2012). AAV-mediated cone rescue in a naturally occurring mouse model of CNGA3-achromatopsia. PLoS One, 7(4), e35250. https://doi.org/10.1371/journal.pone.0035250
Patel, N., Aldahmesh, M. A., Alkuraya, H., Anazi, S., Alsharif, H., Khan, A. O., Sunker, A., Al-mohsen, S., Abboud, E. B., Nowilaty, S. R., Alowain, M., Al-Zaidan, H., Al-Saud, B., Alasmari, A., Abdel-Salam, G. M. H., Abouelhoda, M., Abdulwahab, F. M., Ibrahim, N., Naim, E., & Alkuraya, F. S. (2016). Expanding the clinical, allelic, and locus heterogeneity of retinal dystrophies. Genetics in Medicine, 18(6), 554-562. https://doi.org/10.1038/gim.2015.127
Patel, K. A., Bartoli, K. M., Fandino, R. A., Ngatchou, A. N., Woch, G., Carey, J., & Tanaka, J. C. (2005). Transmembrane S1 mutations in CNGA3 from achromatopsia 2 patients cause loss of function and impaired cellular trafficking of the cone CNG channel. Investigative Ophthalmology and Visual Science, 46(7), 2282-2290. https://doi.org/10.1167/iovs.05-0179
Patel, A., Hayward, J. D., Tailor, V., Nyanhete, R., Ahlfors, H., Gabriel, C., Jannini, T. B., Abbou-Rayyah, Y., Henderson, R., Nischal, K. K., Islam, L., Bitner-Glindzicz, M., Hurst, J., Valdivia, L. E., Zanolli, M., Moosajee, M., Brookes, J., Papadopoulos, M., Khaw, P. T., & Sowden, J. C. (2019). The oculome panel test: Next-generation sequencing to diagnose a diverse range of genetic developmental eye disorders. Ophthalmology, 126(6), 888-907. https://doi.org/10.1016/j.ophtha.2018.12.050
Pertea, M., Lin, X., & Salzberg, S. L. (2001). GeneSplicer: a new computational method for splice site prediction. Nucleic Acids Research, 29(5), 1185-1190. https://doi.org/10.1093/nar/29.5.1185
Pollard, K. S., Hubisz, M. J., Rosenbloom, K. R., & Siepel, A. (2010). Detection of nonneutral substitution rates on mammalian phylogenies. Genome Research, 20(1), 110-121. https://doi.org/10.1101/gr.097857.109
Reese, M. G., Eeckman, F. H., Kulp, D., & Haussler, D. (1997). Improved splice site detection in Genie. Journal of Computational Biology, 4(3), 311-323. https://doi.org/10.1089/cmb.1997.4.311
Reichel, F. F., Michalakis, S., Wilhelm, B., Zobor, D., Muehlfriedel, R., Kohl, S., & Fischer, D. (2021). Three-year results of phase I retinal gene therapy trial for CNGA3-mutated achromatopsia: results of a non randomised controlled trial. British Journal of Ophthalmology. https://doi.org/10.1136/bjophthalmol-2021-319067
Reicher, S., Seroussi, E., & Gootwine, E. (2010). A mutation in gene CNGA3 is associated with day blindness in sheep. Genomics, 95(2), 101-104. https://doi.org/10.1016/j.ygeno.2009.10.003
Rentzsch, P., Schubach, M., Shendure, J., & Kircher, M. (2021). CADD-Splice-improving genome-wide variant effect prediction using deep learning-derived splice scores. Genome Medicine, 13(1), 31. https://doi.org/10.1186/s13073-021-00835-9
Reuter, P., Koeppen, K., Ladewig, T., Kohl, S., Baumann, B., & Wissinger, B., Achromatopsia Clinical Study Group. (2008). Mutations in CNGA3 impair trafficking or function of cone cyclic nucleotide-gated channels, resulting in achromatopsia. Human Mutation, 29(10), 1228-1236. https://doi.org/10.1002/humu.20790
Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., & Committee, A. L. Q. A. (2015). Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in Medicine, 17(5), 405-424. https://doi.org/10.1038/gim.2015.30
Righetti, G., Kempf, M., Braun, C., Jung, R., Kohl, S., Wissinger, B., & Stingl, K. (2021). Oscillatory potentials in achromatopsia as a tool for understanding cone retinal functions. International Journal of Molecular Sciences, 22(23), 12717. https://doi.org/10.3390/ijms222312717
Rim, J. H., Lee, S.-T., Gee, H. Y., Lee, B. J., Choi, J. R., Park, H. W., Han, S.-H., & Han, J. (2017). Accuracy of next-generation sequencing for molecular diagnosis in patients with infantile nystagmus syndrome. JAMA Ophthalmology, 135(12), 1376-1385. https://doi.org/10.1001/jamaophthalmol.2017.4859
Ross, M., Ofri, R., Aizenberg, I., Abu-Siam, M., Pe'er, O., Arad, D., & Gantz, L. (2020). Naturally-occurring myopia and loss of cone function in a sheep model of achromatopsia. Scientific Reports, 10(1), 19314. https://doi.org/10.1038/s41598-020-76205-z
Van Schil, K., Naessens, S., Van de Sompele, S., Carron, M., Aslanidis, A., Van Cauwenbergh, C., & De Baere, E. (2018). Mapping the genomic landscape of inherited retinal disease genes prioritizes genes prone to coding and noncoding copy-number variations. Genetics in Medicine, 20(2), 202-213. https://doi.org/10.1038/gim.2017.97
Saqib, M. A. N., Awan, B. M., Sarfraz, M., Khan, M. N., Rashid, S., & Ansar, M. (2011). Genetic analysis of four Pakistani families with achromatopsia and a novel S4 motif mutation of CNGA3. Japanese Journal of Ophthalmology, 55(6), 676-680. https://doi.org/10.1007/s10384-011-0070-y
Saqib, M. A. N., Nikopoulos, K., Ullah, E., Sher Khan, F., Iqbal, J., Bibi, R., Jarral, A., Sajid, S., Nishiguchi, K. M., Venturini, G., Ansar, M., & Rivolta, C. (2015). Homozygosity mapping reveals novel and known mutations in Pakistani families with inherited retinal dystrophies. Scientific Reports, 5(1), 9965. https://doi.org/10.1038/srep09965
Schwarz, J. M., Rodelsperger, C., Schuelke, M., & Seelow, D. (2010). MutationTaster evaluates disease-causing potential of sequence alterations. Nature Methods, 7(8), 575-576. https://doi.org/10.1038/nmeth0810-575
Shaikh, R. S., Reuter, P., Sisk, R. A., Kausar, T., Shahzad, M., Maqsood, M. I., & Ahmed, Z. M. (2015). Homozygous missense variant in the human CNGA3 channel causes cone-rod dystrophy. European Journal of Human Genetics, 23(4), 473-480. https://doi.org/10.1038/ejhg.2014.136
Shamir, M. H., Ofri, R., Bor, A., Brenner, O., Reicher, S., Obolensky, A., & Gootwine, E. (2010). A novel day blindness in sheep: epidemiological, behavioural, electrophysiological and histopathological studies. Veterinary Journal, 185(2), 130-137. https://doi.org/10.1016/j.tvjl.2009.05.029
Shapiro, M. B., & Senapathy, P. (1987). RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucleic Acids Research, 15(17), 7155-7174. https://doi.org/10.1093/nar/15.17.7155
Sharon, D., Ben-Yosef, T., Goldenberg-Cohen, N., Pras, E., Gradstein, L., Soudry, S., Mezer, E., Zur, D., Abbasi, A. H., Zeitz, C., Cremers, F. P. M., Khan, M. I., Levy, J., Rotenstreich, Y., Birk, O. S., Ehrenberg, M., Leibu, R., Newman, H., Shomron, N., & Perlman, I. (2020). A nationwide genetic analysis of inherited retinal diseases in Israel as assessed by the Israeli inherited retinal disease consortium (IIRDC). Human Mutation, 41(1), 140-149. https://doi.org/10.1002/humu.23903
Shuart, N. G., Haitin, Y., Camp, S. S., Black, K. D., & Zagotta, W. N. (2011). Molecular mechanism for 3:1 subunit stoichiometry of rod cyclic nucleotide-gated ion channels. Nature Communications, 2, 457. https://doi.org/10.1038/ncomms1466
Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., & Higgins, D. G. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 7, 539. https://doi.org/10.1038/msb.2011.75
Stenson, P. D., Mort, M., Ball, E. V., Evans, K., Hayden, M., Heywood, S., & Cooper, D. N. (2017). The Human Gene Mutation Database: Towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Human Genetics, 136(6), 665-677. https://doi.org/10.1007/s00439-017-1779-6
Stone, E. M., Andorf, J. L., Whitmore, S. S., DeLuca, A. P., Giacalone, J. C., Streb, L. M., Braun, T. A., Mullins, R. F., Scheetz, T. E., Sheffield, V. C., & Tucker, B. A. (2017). Clinically focused molecular investigation of 1000 consecutive families with inherited retinal disease. Ophthalmology, 124(9), 1314-1331. https://doi.org/10.1016/j.ophtha.2017.04.008
Sun, W., Li, S., Xiao, X., Wang, P., & Zhang, Q. (2020). Genotypes and phenotypes of genes associated with achromatopsia: A reference for clinical genetic testing. Molecular Vision, 26, 588-602. https://www.ncbi.nlm.nih.gov/pubmed/32913385
Sun, W., & Zhang, Q. (2019). Diseases associated with mutations in CNGA3: Genotype-phenotype correlation and diagnostic guideline. Progress in Molecular Biology and Translational Science, 161, 1-27. https://doi.org/10.1016/bs.pmbts.2018.10.002
Sundaram, V., Wilde, C., Aboshiha, J., Cowing, J., Han, C., Langlo, C. S., Chana, R., Davidson, A. E., Sergouniotis, P. I., Bainbridge, J. W., Ali, R. R., Dubra, A., Rubin, G., Webster, A. R., Moore, A. T., Nardini, M., Carroll, J., & Michaelides, M. (2014). Retinal structure and function in achromatopsia: Implications for gene therapy. Ophthalmology, 121(1), 234-245. https://doi.org/10.1016/j.ophtha.2013.08.017
Sundin, O. H., Yang, J. M., Li, Y., Zhu, D., Hurd, J. N., Mitchell, T. N., & Maumenee, I. H. (2000). Genetic basis of total colourblindness among the Pingelapese islanders. Nature Genetics, 25(3), 289-293. https://doi.org/10.1038/77162
Täger, J., Kohl, S., Birch, D. G., Wheaton, D. K. H., Wissinger, B., & Reuter, P. (2018). An early nonsense mutation facilitates the expression of a short isoform of CNGA3 by alternative translation initiation. Experimental Eye Research, 171, 48-53. https://doi.org/10.1016/j.exer.2018.02.027
Täger, J., Wissinger, B., Kohl, S., & Reuter, P. (2021). Identification of chemical and pharmacological chaperones for correction of trafficking-deficient mutant cyclic nucleotide-gated A3 channels. Molecular Pharmacology, 99(6), 460-468. https://doi.org/10.1124/molpharm.120.000180
Tanaka, N., Dutrow, E. V., Miyadera, K., Delemotte, L., MacDermaid, C. M., Reinstein, S. L., & Guziewicz, K. E. (2015). Canine CNGA3 gene mutations provide novel insights into human achromatopsia-associated channelopathies and treatment. PLoS One, 10(9), e0138943. https://doi.org/10.1371/journal.pone.0138943
Taylor, R. L., Parry, N. R. A., Barton, S. J., Campbell, C., Delaney, C. M., Ellingford, J. M., Hall, G., Hardcastle, C., Morarji, J., Nichol, E. J., Williams, L. C., Douzgou, S., Clayton-Smith, J., Ramsden, S. C., Sharma, V., Biswas, S., Lloyd, I. C., Ashworth, J. L., Black, G. C., & Sergouniotis, P. I. (2017). Panel-based clinical Genetic Testing in 85 Children with Inherited Retinal disease. Ophthalmology, 124(7), 985-991. https://doi.org/10.1016/j.ophtha.2017.02.005
Tavtigian, S. V., Deffenbaugh, A. M., Yin, L., Judkins, T., Scholl, T., Samollow, P. B., & Thomas, A. (2006). Comprehensive statistical study of 452 BRCA1 missense substitutions with classification of eight recurrent substitutions as neutral. Journal of Medical Genetics, 43(4), 295-305. https://doi.org/10.1136/jmg.2005.033878
Tekavcic Pompe, M., Vrabic, N., Volk, M., Meglic, A., Jarc-Vidmar, M., Peterlin, B., & Fakin, A. (2021). Disease progression in CNGA3 and CNGB3 retinopathy; characteristics of slovenian cohort and proposed OCT staging based on pooled data from 126 patients from 7 studies. Current Issues in Molecular Biology, 43(2), 941-957. https://doi.org/10.3390/cimb43020067
Thiadens, A. A., den Hollander, A. I., Roosing, S., Nabuurs, S. B., Zekveld-Vroon, R. C., Collin, R. W., & Klaver, C. C. (2009). Homozygosity mapping reveals PDE6C mutations in patients with early-onset cone photoreceptor disorders. American Journal of Human Genetics, 85(2), 240-247. https://doi.org/10.1016/j.ajhg.2009.06.016
Thiadens, A. A., Roosing, S., Collin, R. W., van Moll-Ramirez, N., van Lith-Verhoeven, J. J., van Schooneveld, M. J., & Klaver, C. C. (2010). Comprehensive analysis of the achromatopsia genes CNGA3 and CNGB3 in progressive cone dystrophy. Ophthalmology, 117(4), 825-830. https://doi.org/10.1016/j.ophtha.2009.09.008
Thiadens, A. A., Slingerland, N. W., Roosing, S., van Schooneveld, M. J., van Lith-Verhoeven, J. J., van Moll-Ramirez, N., & Klaver, C. C. (2009). Genetic etiology and clinical consequences of complete and incomplete achromatopsia. Ophthalmology, 116(10), 1984-1989. https://doi.org/10.1016/j.ophtha.2009.03.053
Thiadens, A. A., Somervuo, V., van den Born, L. I., Roosing, S., van Schooneveld, M. J., Kuijpers, R. W., & Klaver, C. C. (2010). Progressive loss of cones in achromatopsia: an imaging study using spectral-domain optical coherence tomography. Investigative Ophthalmology and Visual Science, 51(11), 5952-5957. https://doi.org/10.1167/iovs.10-5680
Thomas, M. G., McLean, R. J., Kohl, S., Sheth, V., & Gottlob, I. (2012). Early signs of longitudinal progressive cone photoreceptor degeneration in achromatopsia. British Journal of Ophthalmology, 96(9), 1232-1236. https://doi.org/10.1136/bjophthalmol-2012-301737
Tränkner, D., Jagle, H., Kohl, S., Apfelstedt-Sylla, E., Sharpe, L. T., Kaupp, U. B., & Wissinger, B. (2004). Molecular basis of an inherited form of incomplete achromatopsia. Journal of Neuroscience, 24(1), 138-147. https://doi.org/10.1523/JNEUROSCI.3883-03.2004
Varsányi, B., Wissinger, B., Kohl, S., Koeppen, K., & Farkas, A. (2005). Clinical and genetic features of Hungarian achromatopsia patients. Molecular Vision, 11, 996-1001. https://www.ncbi.nlm.nih.gov/pubmed/16319819
Vihinen, M. (2013). Guidelines for reporting and using prediction tools for genetic variation analysis. Human Mutation, 34(2), 275-282. https://doi.org/10.1002/humu.22253
Vincent, A., Wright, T., Billingsley, G., Westall, C., & Héon, E. (2011). Oligocone trichromacy is part of the spectrum of CNGA3-related cone system disorders. Ophthalmic Genetics, 32(2), 107-113. https://doi.org/10.3109/13816810.2010.544366
Wang, X., Wang, H., Cao, M., Li, Z., Chen, X., Patenia, C., Gore, A., Abboud, E. B., Al-Rajhi, A. A., Lewis, R., Lupski, J. R., Mardon, G., Zhang, K., Muzny, D., Gibbs, R. A., & Chen, R. (2011). Whole-exome sequencing identifies ALMS1, IQCB1, CNGA3, and MYO7A mutations in patients with Leber congenital amaurosis. Human Mutation, 32(12), 1450-1459. https://doi.org/10.1002/humu.21587
Wang, P., Li, S., Sun, W., Xiao, X., Jia, X., Liu, M., Xu, L., Long, Y., & Zhang, Q. (2019). An ophthalmic targeted exome sequencing panel as a powerful tool to Identify Causative Mutations in Patients Suspected of Hereditary Eye diseases. Translational Vision Science & Technology, 8(2), 21. https://doi.org/10.1167/tvst.8.2.21
Weisschuh, N., Stingl, K., Audo, I., Biskup, S., Bocquet, B., Branham, K., & Kohl, S. (2018). Mutations in the gene PDE6C encoding the catalytic subunit of the cone photoreceptor phosphodiesterase in patients with achromatopsia. Human Mutation, 39(10), 1366-1371. https://doi.org/10.1002/humu.23606
Wissinger, B., Gamer, D., Jagle, H., Giorda, R., Marx, T., Mayer, S., & Kohl, S. (2001). CNGA3 mutations in hereditary cone photoreceptor disorders. American Journal of Human Genetics, 69(4), 722-737. https://doi.org/10.1086/323613
Weisschuh, N., Obermaier, C. D., Battke, F., Bernd, A., Kuehlewein, L., Nasser, F., Zobor, D., Zrenner, E., Weber, E., Wissinger, B., Biskup, S., Stingl, K., & Kohl, S. (2020). Genetic architecture of inherited retinal degeneration in Germany: A large cohort study from a single diagnostic center over a 9-year period. Human Mutation, 41(9), 1514-1527. https://doi.org/10.1002/humu.24064
Wiszniewski, W., Lewis, R. A., & Lupski, J. R. (2007). Achromatopsia: The CNGB3 p.T383fsX mutation results from a founder effect and is responsible for the visual phenotype in the original report of uniparental disomy 14. Human Genetics, 121(3-4), 433-439. https://doi.org/10.1007/s00439-006-0314-y
Xu, M., Gelowani, V., Eblimit, A., Wang, F., Young, M. P., Sawyer, B. L., & Chen, R. (2015). ATF6 is mutated in early onset photoreceptor degeneration with macular involvement. Investigative Ophthalmology and Visual Science, 56(6), 3889-3895. https://doi.org/10.1167/iovs.15-16778
Yang, P., Michaels, K. V., Courtney, R. J., Wen, Y., Greninger, D. A., Reznick, L., Karr, D. J., Wilson, L. B., Weleber, R. G., & Pennesi, M. E. (2014). Retinal morphology of patients with achromatopsia during early childhood: Implications for gene therapy. JAMA Ophthalmology, 132(7), 823-831. https://doi.org/10.1001/jamaophthalmol.2014.685
Yeo, G., & Burge, C. B. (2004). Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. Journal of Computational Biology, 11(2-3), 377-394. https://doi.org/10.1089/1066527041410418
Zagotta, W. N., & Siegelbaum, S. A. (1996). Structure and function of cyclic nucleotide-gated channels. Annual Review of Neuroscience, 19, 235-263. https://doi.org/10.1146/annurev.ne.19.030196.001315
Zelinger, L., Cideciyan, A. V., Kohl, S., Schwartz, S. B., Rosenmann, A., Eli, D., & Sharon, D. (2015). Genetics and disease expression in the CNGA3 form of achromatopsia: Steps on the path to gene therapy. Ophthalmology, 122(5), 997-1007. https://doi.org/10.1016/j.ophtha.2014.11.025
Zheng, X., Hu, Z., Li, H., & Yang, J. (2022). Structure of the human cone photoreceptor cyclic nucleotide-gated channel. Nature Structural & Molecular Biology, 29(1), 40-46. https://doi.org/10.1038/s41594-021-00699-y
Zhong, H., Molday, L. L., Molday, R. S., & Yau, K. W. (2002). The heteromeric cyclic nucleotide-gated channel adopts a 3A:1B stoichiometry. Nature, 420(6912), 193-198. https://doi.org/10.1038/nature01201
Zobor, D., Werner, A., Stanzial, F., Benedicenti, F., Rudolph, G., Kellner, U., & Consortium, R.-C. (2017). The clinical phenotype of CNGA3-related achromatopsia: pretreatment characterization in preparation of a gene replacement therapy trial. Investigative Ophthalmology and Visual Science, 58(2), 821-832. https://doi.org/10.1167/iovs.16-20427

Auteurs

Maria Solaki (M)

Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.

Britta Baumann (B)

Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.

Peggy Reuter (P)

Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.

Sten Andreasson (S)

Department of Ophthalmology, University Hospital Lund, Lund, Sweden.

Isabelle Audo (I)

Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.
CHNO des Quinze-Vingts, Centre de Référence Maladies Rares REFERET, and INSERM-DGOS CIC1423, Paris, France.

Carmen Ayuso (C)

Department of Genetics & Genomics, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.
Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain.

Ghassan Balousha (G)

Department of Pathology and Histology, Faculty of Medicine, Al-Quds University, Eastern Jerusalem, Palestine.

Francesco Benedicenti (F)

Clinical Genetics Service and South Tyrol Coordination Center for Rare Diseases, Department of Pediatrics, Regional Hospital of Bolzano, Bolzano, Italy.

David Birch (D)

Retina Foundation of the Southwest, Dallas, Texas, USA.

Pierre Bitoun (P)

Genetique Medicale, CHU Paris Nord, Hopital Jean Verdier, Bondy Cedex, France.

Delphine Blain (D)

National Eye Institute/NEI, Bethesda, Maryland, USA.

Beatrice Bocquet (B)

National Reference Centre for Inherited Sensory Diseases, Institute for Neurosciences of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France.

Kari Branham (K)

Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, USA.

Jaume Català-Mora (J)

Unitat de Distròfies Hereditàries de Retina Hospital Sant Joan de Déu, Barcelona, Esplugues de Llobregat, Spain.

Elfride De Baere (E)

Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium.

Helene Dollfus (H)

CARGO, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
U-1112, Inserm, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.

Mohammed Falana (M)

Department of Pathology and Histology, Faculty of Medicine, Al-Quds University, Eastern Jerusalem, Palestine.

Roberto Giorda (R)

Molecular Biology Laboratory, Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco, Italy.

Irina Golovleva (I)

Department of Medical Biosciences/Medical and Clinical Genetics, University of Umea, Umea, Sweden.

Irene Gottlob (I)

The University of Leicester Ulverscroft Eye Unit, Leicester Royal Infirmary, Leicester, UK.

John R Heckenlively (JR)

Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, USA.

Samuel G Jacobson (SG)

Department of Ophthalmology, Perelman School of Medicine, Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

Kaylie Jones (K)

Retina Foundation of the Southwest, Dallas, Texas, USA.

Herbert Jägle (H)

Department of Ophthalmology, University of Regensburg, Regensburg, Germany.

Andreas R Janecke (AR)

Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria.

Ulrich Kellner (U)

Zentrum für Seltene Netzhauterkrankungen, AugenZentrum Siegburg, MVZ Augenärztliches Diagnostik- und Therapiecentrum Siegburg GmbH, Siegburg, Germany.
RetinaScience, Bonn, 53192, Germany.

Petra Liskova (P)

Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.

Birgit Lorenz (B)

Department of Ophthalmology, Justus-Liebig University Giessen, Giessen, Germany.
Department of Ophthalmology, Universitaetsklinikum Bonn, Bonn, Germany.

Loreto Martorell-Sampol (L)

Genetica Molecular-Edifici Docent, Hospital Sant Joan de Deu, Esplugues-Barcelona, Spain.

André Messias (A)

Department of Ophthalmology, Otorhinolaryngology, and Head and Neck Surgery, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.

Isabelle Meunier (I)

National Reference Centre for Inherited Sensory Diseases, Montpellier University Hospital, University of Montpellier, Montpellier, France.
Sensgene Care Network, France.

Fernanda Belga Ottoni Porto (F)

INRET Clínica e Centro de Pesquisa, IEP Santa Casa Belo Horizonte, Belo Horizonte, MG, Brazil.

Eleni Papageorgiou (E)

Department of Ophthalmology, University Hospital of Larissa, Mezourlo, Larissa, Greece.

Astrid S Plomp (AS)

Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.

Thomy J L de Ravel (TJL)

Centre for Medical Genetics, University Hospital Brussels, Brussels, Belgium.

Charlotte M Reiff (CM)

Augenarztpraxis am Stadttheater, Freiburg, Germany.

Agnes B Renner (AB)

Augenarztpraxis Regensburg, Regensburg, Germany.

Thomas Rosenberg (T)

Department of Ophthalmology, National Eye Clinic, Glostrup Hospital, Glostrup, Denmark.

Günther Rudolph (G)

University Eye Hospital, Ludwig Maximilians University, Munich, Germany.

Roberto Salati (R)

Scientific Institute, IRCCS Eugenio Medea, Pediatric Ophthalmology Unit, Bosisio Parini, Lecco, Italy.

E Cumhur Sener (EC)

Strabismus and Pediatric Ophthalmology, Private Practice, Ankara, Turkey.

Paul A Sieving (PA)

Center for Ocular Regenerative Therapy, School of Medicine, University of California Davis, Sacramento, USA.

Franco Stanzial (F)

Clinical Genetics Service and South Tyrol Coordination Center for Rare Diseases, Department of Pediatrics, Regional Hospital of Bolzano, Bolzano, Italy.

Elias I Traboulsi (EI)

Center for Genetic Eye Diseases, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA.

Stephen H Tsang (SH)

Department of Ophthalmology, Pathology and Cell Biology, College of Physicians and Surgeons, Columbia Stem Cell Initiative, Columbia University, New York City, New York, USA.

Balázs Varsanyi (B)

Department of Ophthalmology, Medical School, University of Pécs and Ganglion Medical Center, Pécs, Pécs, Hungary.

Richard G Weleber (RG)

Oregon Health & Science University, Ophthalmic Genetics Service of the Casey Eye Institute, 515 SW Campus Drive, 97239, Portland, Oregon, USA.

Ditta Zobor (D)

Centre for Ophthalmology, Institute for Ophthalmic Research, University Hospital Tübingen, Tübingen, Germany.
Department of Ophthalmology, Semmelweis University Budapest, Budapest, Hungary.

Katarina Stingl (K)

Center for Ophthalmology, University Eye Hospital, University of Tübingen, Tübingen, Germany.
Center for Rare Eye Diseases, University of Tübingen, Tübingen, Germany.

Bernd Wissinger (B)

Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.

Susanne Kohl (S)

Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH