SS-net: split and spatial attention network for vessel segmentation of retinal OCT angiography.


Journal

Applied optics
ISSN: 1539-4522
Titre abrégé: Appl Opt
Pays: United States
ID NLM: 0247660

Informations de publication

Date de publication:
20 Mar 2022
Historique:
entrez: 25 3 2022
pubmed: 26 3 2022
medline: 1 4 2022
Statut: ppublish

Résumé

Optical coherence tomography angiography (OCTA) has been widely used in clinical fields because of its noninvasive, high-resolution qualities. Accurate vessel segmentation on OCTA images plays an important role in disease diagnosis. Most deep learning methods are based on region segmentation, which may lead to inaccurate segmentation for the extremely complex curve structure of retinal vessels. We propose a U-shaped network called SS-Net that is based on the attention mechanism to solve the problem of continuous segmentation of discontinuous vessels of a retinal OCTA. In this SS-Net, the improved SRes Block combines the residual structure and split attention to prevent the disappearance of gradient and gives greater weight to capillary features to form a backbone with an encoder and decoder architecture. In addition, spatial attention is applied to extract key information from spatial dimensions. To enhance the credibility, we use several indicators to evaluate the function of the SS-Net. In two datasets, the important indicators of accuracy reach 0.9258/0.9377, respectively, and a Dice coefficient is achieved, with an improvement of around 3% compared to state-of-the-art models in segmentation.

Identifiants

pubmed: 35333254
pii: 470404
doi: 10.1364/AO.451370
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2357-2363

Auteurs

Articles similaires

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages
1.00
Humans Magnetic Resonance Imaging Brain Infant, Newborn Infant, Premature
Humans Algorithms Software Artificial Intelligence Computer Simulation

Unsupervised learning for real-time and continuous gait phase detection.

Dollaporn Anopas, Yodchanan Wongsawat, Jetsada Arnin
1.00
Humans Gait Neural Networks, Computer Unsupervised Machine Learning Walking

Classifications MeSH