Folding molecular dynamics simulation of T-peptide, a HIV viral entry inhibitor: Structure, dynamics, and comparison with the experimental data.
DMSO
HIV
NMR
T-peptide
molecular dynamics simulations
organic solvent
peptide folding
peptide structure
Journal
Journal of computational chemistry
ISSN: 1096-987X
Titre abrégé: J Comput Chem
Pays: United States
ID NLM: 9878362
Informations de publication
Date de publication:
30 05 2022
30 05 2022
Historique:
revised:
24
02
2022
received:
15
01
2022
accepted:
02
03
2022
pubmed:
26
3
2022
medline:
4
5
2022
entrez:
25
3
2022
Statut:
ppublish
Résumé
Peptide T is a synthetic octapeptide fragment, which corresponds to the region 185-192 of the gp120 HIV coat protein and functions as a viral entry inhibitor. In this work, a folding molecular dynamics simulation of peptide T in a membrane-mimicking (DMSO) solution was performed with the aim of characterizing the peptide's structural and dynamical properties. We show that peptide T is highly flexible and dynamic. The main structural characteristics observed were rapidly interconverting short helical stretches and turns, with a notable preference for the formation of β-turns. The simulation also indicated that the C-terminal part appears to be more stable than the rest of the peptide, with the most preferred conformation for residues 5-8 being a β-turn. In order to validate the accuracy of the simulations, we compared our results with the experimental NMR data obtained for the T-peptide in the same solvent. In agreement with the simulation, the NMR data indicated the presence of a preferred structure in solution that was consistent with a β-turn comprising the four C-terminal residues. An additional comparison between the experimental and simulation-derived chemical shifts also showed a reasonable agreement between experiment and simulation, further validating the simulation-derived structural characterization of the T-peptide. We conclude that peptide folding simulations produce physically relevant results even when performed with organic solvents that were not part of the force field parameterization procedure.
Substances chimiques
HIV Fusion Inhibitors
0
Peptides
0
Solvents
0
Peptide T
106362-33-8
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
942-952Informations de copyright
© 2022 Wiley Periodicals LLC.
Références
P. D. Kwong, R. Wyatt, J. Robinson, R. W. Sweet, J. Sodroski, W. A. Hendrickson, Nature 1998, 393, 648.
D. Picone, A. Rivieccio, O. Crescenzi, G. Caliendo, V. Santagada, E. Perissutti, S. Spisani, S. Traniello, P. A. Temussi, J. Pept. Sci. 2001, 7, 197.
M. R. Ruff, L. M. Melendez-Guerrero, Q. Yang, W. Ho, J. W. Mikovits, C. B. Pert, F. A. Ruscetti, Antivir. Res. 2001, 52, 63.
C. B. Pert, J. M. Hill, M. R. Ruff, R. M. Berman, W. G. Robey, L. O. Arthur, F. W. Ruscetti, W. L. Farrar, Proc. Natl. Acad. Sci. U. S. A. 1986, 83, 9254.
D. Picone, P. A. Temussi, M. Marastoni, R. Tomatis, A. Motta, FEBS Lett. 1988, 231, 159.
D. A. Mitsikas, N. M. Glykos, PLoS One 2020, 15, e0243429.
P. S. Georgoulia, N. M. Glykos, ACS Omega 2018, 3, 14746.
T. Adamidou, K. Arvaniti, N. M. Glykos, J. Phys. Chem. B 2017, 122, 106.
A. Serafeim, G. Salamanos, K. K. Patapati, N. M. Glykos, J. Chem. Inf. Model. 2016, 56, 2035.
A. S. Baltzis, N. M. Glykos, Protein Sci. 2016, 25, 587.
P. I. Koukos, N. M. Glykos, J. Phys. Chem. B 2014, 118, 10076.
P. S. Georgoulia, N. M. Glykos, J. Phys. Chem. B 2013, 117, 5522.
D. A. Case, T. E. I. I. I. Cheatham, T. Darden, H. Gohlke, R. Luo, K. M. Merz Jr., A. Onufriev, C. Simmerling, B. Wang, R. J. Woods, J. Comput. Chem. 2005, 26, 1668.
L. Kale, R. Skeel, M. Bhandarkar, R. Brunner, A. Gursoy, N. Krawetz, J. Phillips, A. Shinozaki, K. Varadarajan, K. Schulten, J. Comput. Phys. 1999, 151, 283.
J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kale, K. Schulten, J. Comput. Chem. 2005, 26, 1781.
V. Hornak, R. Abel, A. Okur, B. Strockbine, A. Roitberg, C. Simmerling, Proteins 2006, 65, 712.
K. Lindorff-Larsen, S. Piana, K. Palmo, P. Maragakis, J. L. Klepeis, R. O. Dror, D. E. Shaw, Proteins 2010, 78, 1950.
R. B. Best, G. Hummer, J. Phys. Chem. B 2009, 113, 9004.
C. Zhang, J. Ma, J. Chem. Phys. 2010, 132, 244101.
J. A. Izaguirre, S. Reich, R. D. Skeel, J. Chem. Phys. 1999, 110, 9853.
T. Darden, D. York, L. Pedersen, J. Chem. Phys. 1993, 98, 10089.
J.-P. Ryckaert, G. Ciccotti, H. J. C. Berendsen, J. Comput. Phys. 1977, 23, 327.
N. M. Glykos, J. Comput. Chem. 2006, 27, 1765.
P. I. Koukos, N. M. Glykos, J. Comput. Chem. 2013, 34, 2310.
Y. Mu, P. Nguyen, G. Stock, Proteins 2004, 58, 45.
A. Altis, P. H. Nguyen, R. Hegger, G. Stock, J. Chem. Phys. 2007, 126, 244111.
A. Altis, M. Otten, P. H. Nguyen, R. Hegger, G. Stock, J. Chem. Phys. 2008, 128, 245102.
D. Frishman, P. Argos, Proteins 1995, 23, 566.
E. Hutchinson, J. Thornton, Protein Sci. 2008, 5, 212.
Y. Shen, A. Bax, J. Biomol. NMR 2010, 48, 13.
W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 1996, 14, 33.
P. I. Koukos, N. M. Glykos, J. Chem. Inf. Model. 2014, 54, 209.
G. E. Crooks, G. Hon, J. M. Chandonia, S. E. Brenner, Genome Res. 2004, 14, 1188.
R. J. Abraham, J. J. Byrne, L. Griffiths, M. Perez, Magn. Reason. Chem. 2006, 44, 491.
A. D. Buckingham, T. Schaefer, W. G. Schneider, J. Chem. Phys. 1960, 32, 1227.
M.-L. Tremblay, A. W. Banks, J. K. Rainey, J. Biomol. NMR 2010, 46, 257.