Sterically Frustrated Aromatic Enes with Various Colors Originating from Multiple Folded and Twisted Conformations in Crystal Polymorphs.

mechanochromism metastable structures overcrowded ethylene piezochromism thermochromism

Journal

Chemistry (Weinheim an der Bergstrasse, Germany)
ISSN: 1521-3765
Titre abrégé: Chemistry
Pays: Germany
ID NLM: 9513783

Informations de publication

Date de publication:
16 May 2022
Historique:
received: 28 01 2022
pubmed: 26 3 2022
medline: 26 3 2022
entrez: 25 3 2022
Statut: ppublish

Résumé

Overcrowded ethylenes composed of 10-methyleneanthrone and two bulky aromatic rings contain a twisted carbon-carbon double (C=C) bond as well as a folded anthrone unit. As such, they are unique frustrated aromatic enes (FAEs). Various colored crystals of these FAEs, obtained in different solvents, correspond to multiple metastable conformations of the FAEs with various twist and fold angles of the C=C bond, as well as various dihedral angles of attached aryl units with respect to the C=C bond. The relationships between color and these parameters associated with conformational features around the C=C bond were elucidated in experimental and computational studies. Owing to the fact that they are separated by small energy barriers, the variously colored conformations in the FAE crystal change in response to various external stimuli, such as mechanical grinding, hydrostatic pressure and thermal heating.

Identifiants

pubmed: 35333427
doi: 10.1002/chem.202200286
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e202200286

Subventions

Organisme : Japan Society for the Promotion of Science
ID : JP20K05475
Organisme : Japan Society for the Promotion of Science
ID : JP20H05865
Organisme : Japan Society for the Promotion of Science
ID : JP21H05482

Informations de copyright

© 2022 Wiley-VCH GmbH.

Références

Typical reviews for chromic molecules, see:
C. Reichardt, Chem. Soc. Rev. 1992, 21, 147;
E. Hadjoudis, I. M. Mavridis, Chem. Soc. Rev. 2004, 33, 579;
M. Irie, T. Fukaminato, K. Matsuda, S. Kobatake, Chem. Rev. 2014, 114, 12174;
D. Bléger, S. Hecht, Angew. Chem. Int. Ed. 2015, 54, 11338;
A. Fihey, A. Perrier, W. R. Browne, D. Jacquemin, Chem. Soc. Rev. 2015, 44, 3719;
M. A. Haidekker, E. A. Theodorakis, J. Mater. Chem. C 2016, 4, 2707;
M. K. Kuimova, Phys. Chem. Chem. Phys. 2012, 14, 12671;
Z. Yang, J. Cao, Y. He, J. H. Yang, T. Kim, X. Peng, J. S. Kim, Chem. Soc. Rev. 2014, 43, 4563;
T. Kowada, H. Maeda, K. Kikuchi, Chem. Soc. Rev. 2015, 44, 4953.
 
T. Nishiuchi, Y. Kuwatani, T. Nishinaga, M. Iyoda, Chem. Eur. J. 2009, 15, 6838;
T. Nishiuchi, K. Tanaka, Y. Kuwatani, J. Sung, T. Nishinaga, D. Kim, M. Iyoda, Chem. Eur. J. 2013, 19, 4110;
T. Nishiuchi, M. Iyoda, Bull. Chem. Soc. Jpn. 2014, 87, 960;
T. Nishiuchi, M. Iyoda, Chem. Rec. 2015, 15, 329.
 
C. Yuan, S. Saito, C. Camacho, S. Irle, I. Hisaki, S. Yamaguchi, J. Am. Chem. Soc. 2013, 135, 8842;
C. Yuan, S. Saito, C. Camacho, T. Kowalczyk, S. Irle, S. Yamaguchi, Chem. Eur. J. 2014, 20, 2193;
S. Saito, S. Nobusue, E. Tsuzaka, C. Yuan, C. Mori, M. Hara, T. Seki, C. Camacho, S. Irle, S. Yamaguchi, Nat. Commun. 2016, 7, 12094;
R. Kotani, H. Sotome, H. Okajima, S. Yokoyama, Y. Nakaike, A. Kashiwagi, C. Mori, Y. Nakada, S. Yamaguchi, A. Otsuka, A. Sakamoto, H. Miyasaka, S. Saito, J. Mater. Chem. C. 2017, 5, 5248;
T. Yamakado, K. Otsubo, A. Osuka, S. Saito, J. Am. Chem. Soc. 2018, 140, 6245;
R. Kimura, H. Kuramochi, P. Liu, T. Yamakado, A. Osuka, T. Tahara, S. Saito, Angew. Chem. Int. Ed. 2020, 59, 16430.
Typical examples of OCEs composed of bistricyclic aromatic ene skeleton, see:
I. Agranat, M. R. Suissa, Struct. Chem. 1993, 4, 59;
T. Suzuki, T. Fukushima, T. Miyashi, T. Tsuji, Angew. Chem. Int. Ed. Engl. 1997, 36, 2495;
P. U. Biedermann, J. J. Stezowski, I. Agranate, Chem. Eur. J. 2006, 12, 3345;
C. Wentrup, M. J. Regimbald-Krnel, D. Müller, P. Comba, Angew. Chem. Int. Ed. 2016, 55, 14600;
A. Takai, D. J. Freas, T. Suzuki, M. Sugimoto, J. Labuta, R. Haruki, R. Kumai, S-i. Aadachi, H. Sakai, T. Hasobe, Y. Matsushita, M. Takeuchi, Org. Chem. Front. 2017, 4, 650;
T. Suzuki, H. Okada, T. Nakagawa, K. Komatsu, C. Fujimoto, H. Kagi, Y. Matsuo, Chem. Sci. 2018, 9, 475;
Y. Matsuo, Y. Wang, H. Ueno, T. Nakagawa, H. Okada, Angew. Chem. Int. Ed. 2019, 58, 8762;
Y. Wang, Y. Ma, K. Ogumi, B. Wang, T. Nakagawa, Y. Fu, Y. Matsuo, Commun. Chem. 2020, 3, 93;
Y. Adachi, T. Nomura, S. Tazuhara, H. Naito, J. Ohshita, Chem. Commun. 2021, 57, 1316.
Typical examples of recent OCEs composed of anthraquinodimethane core, see:
X. Zhang, X. Jiang, K. Zhang, L. Mao, J. Luo, C. Chi, H. S. O. Chan, J. Wu, J. Org. Chem. 2010, 75, 8069;
T. Suzuki, Y. Ishigaki, K. Sugawara, Y. Umezawa, R. Katoono, A. Shimoyama, Y. Manabe, K. Fukase, T. Fukushima, Tetrahedron 2018, 74, 2239;
X. Yin, J. Z. Low, K. J. Fallon, D. W. Paley, L. M. Campos, Chem. Sci. 2019, 10, 10733;
Y. Ishigaki, Y. Hayashi, T. Suzuki, J. Am. Chem. Soc. 2019, 141, 18293;
Y. Ishigaki, T. Hashimoto, K. Sugawara, S. Suzuki, T. Suzuki, Angew. Chem. Int. Ed. 2020, 59, 6581;
T. Nishiuchi, R. Ito, E. Stratmann, T. Kubo, J. Org. Chem. 2020, 85, 179;
K. Li, Z. Xu, J. Xu, T. Weng, X. Chen, S. Sato, J. Wu, Z. Sun, J. Am. Chem. Soc. 2021, 143, 20419.
Typical examples for bianthrones, see:
H. Meyer, Ber. Dtsch. Chem. Ges. B. 1909, 42, 143;
H. Meyer, Monatsh. Chem. 1909, 30, 165;
Y. Taouhi, O. Kalisky, I. Agranat, J. Org. Chem. 1979, 44, 1949;
Y. Hirao, Y. Hamamoto, N. Nagamachi, T. Kubo, Phys. Chem. Chem. Phys. 2019, 21, 12209;
Y. Hamamoto, Y. Hirao, T. Kubo, J. Phys. Chem. Lett. 2021, 12, 4729.
 
N. Assadi, S. Pogodin, S. Cohen, I. Agranat, Struct. Chem. 2015, 26, 319;
N. Assadi, S. Pogodin, S. Cohen, I. Agranat, Asian J. Org. Chem. 2015, 4, 1392.
 
T. Nishiuchi, S. Aibara, T. Kubo, Angew. Chem. Int. Ed. 2018, 57, 16516;
T. Nishiuchi, D. Ishii, S. Aibara, H. Sato, T. Kubo, Chem. Commun. 2022, 58, 3306.
Typical reviews for aggregation-induced emission, see:
J. Mei, N. L. C. Leung, R. T. K. Kwok, J. W. Y. Lam, B. Z. Tang, Chem. Rev. 2015, 115, 11718;
Y. Xie, Z. Li, Chem. Asian J. 2019, 14, 2524;
Z. Zhao, H. Zhang, J. W. Y. Lam, B. Z. Tang, Angew. Chem. Int. Ed. 2020, 59, 9888;
X. Cai, B. Liu, Angew. Chem. Int. Ed. 2020, 59, 9868.
For the structural optimization of 1, we used B3LYP/6-31G* level of theory because other methods such as B3LYP−D3/6-31G* and ωB97X−D/6-31G*, which can include a dispersion force, give structures that differ significantly from those observed in the crystalline state. These calculated structures are shown in Figure S14.
Regarding the 3D map of TD-DFT calculated results of FAE 1, CAM−B3LYP/6-31G*//B3LYP/6-31G* level of theory was also computed and showed similar trend with that of shown in Figure 6. The result is shown in Figure S15.
Although 1-AD also has an anthrone-anthrone π-π interaction, the magnitude of the longer wavelength shift in the S0→S1 transition (monomer: 573 nm, dimer: 578 nm) is smaller than that of 1-TCE.
Examples of recent mechanochromic molecules, see;
H. Ito, M. Muromoto, S. Kurenuma, S. Ishizuka, N. Kitamura, H. Sato, T. Seki, Nat. Commun. 2013, 4, 2009;
T. Seki, K. Sakurada, H. Ito, Angew. Chem. Int. Ed. 2013, 52, 12828;
S. Suzuki, R. Maya, Y. Uchida, T. Naota, ACS Omega 2019, 4, 10031;
Y. Ishigaki, K. Sugawara, M. Yoshida, M. Kato, T. Suzuki, Bull. Chem. Soc. Jpn. 2019, 92, 1211;
T. Nishiuchi, K. Kisaka, T. Kubo, Angew. Chem. Int. Ed. 2020, 60, 5400;
Y. Tani, M. Komura, T. Ogawa, Chem. Commun. 2020, 56, 6810.
Examples of hydrostatic pressure induced chromism, see:
K. Nagura, S. Saito, H. Yusa, H. Yamawaki, H. Fujihisa, H. Sato, Y. Shimoikeda, S. Yamaguchi, J. Am. Chem. Soc. 2013, 135, 10322;
Q. Sui, X.-T. Ren, Y.-Z. Dai, K. Wang, W.-T. Li, T. Gong, J.-J. Fang, B. Zou, E.-Q. Gao, L. Wang, Chem. Sci. 2017, 8, 2758;
B. Yu, Y. Wang, L. Wang, X. Tan, Y.-M. Zhang, K. Wang, M. Li, B. Zou, S. X.-A. Zhang, Phys. Chem. Chem. Phys. 2019, 21, 17696;
Q. Sui, P. Li, R. Sun, Y.-H. Fang, L. Wang, B.-W. Wang, E.-Q. Gao, S. Gao, J. Phys. Chem. Lett. 2020, 11, 9282;
D. Zhao, M. Wang, G. Xiao, B. Zou, J. Phys. Chem. Lett. 2020, 11, 7297.
Examples of reversible thermochromic molecules, see;
Y. Morita, S. Suzuki, K. Fukui, S. Nakazawa, H. Kitagawa, H. Kishida, H. Okamoto, A. Naito, A. Sekine, Y. Ohashi, M. Shiro, K. Sasaki, K. Sato, T. Takui, K. Nakasuji, Nat. Mater. 2008, 7, 48;
S. Perruchas, C. Tard, X. F. L. Goff, A. Fargues, A. Garcia, S. Kahlal, J.-Y. Saillard, T. Gacoin, J.-P. Boilot, Inorg. Chem. 2011, 50, 10682;
K. Shimada, A. Kobayashi, Y. Ono, H. Ohara, T. Hasegawa, T. Taketsugu, E. Sakuda, S. Akagi, N. Kitamura, M. Kato, J. Phys. Chem. C 2016, 120, 16002;
T. Nishiuchi, H. Sotome, R. Fukuuchi, K. Kamada, H. Miyasaka, T. Kubo, Aggregate 2021, 2, e126.
Upon heating 2-Y from 140 to 160 °C below the melting point (mp: 163-165 °C) and then standing for several minutes, a single-crystal-to-single-crystal (SCSC) transition to 2-O begins (Figure S30). Thus, X-ray crystallographic analysis of 2-Y over 140 °C could not be performed. This thermal induced SCSC transition is a known phenomenon in several organic compounds, see;
F. H. Herbstein, Acta Crystallogr. Sect. B 2006, 62, 341;
X. Luo, J. Li, C. Li, L. Heng, Y. Q. Dong, Z. Liu, Z. Bo, B. Z. Tang, Adv. Mater. 2011, 23, 3261;
Y. Abe, S. Karasawa, N. Koga, Chem. Eur. J. 2012, 18, 15038.
Crystal void volume in a unit cell was calculated by using the CrystalExplorer program (version 21.5), P. R. Spackman, M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, D. Jayatilaka, M. A. Spackman, J. Appl. Cryst. 2021, 54, 1006.
Reversible SCSC transition accompanied with thermochromic fluorescence behavior was reported, see: S. Yang, P.-A. Yin, L. Li, Q. Peng, X. Gu, G. Gao, J. You, B. Z. Tang, Angew. Chem. Int. Ed. 2020, 59, 10136.
Examples of force-responsive materials, see;
M. K. Beyer, H.-C. Schaumann, Chem. Rev. 2005, 105, 2921;
M. M. Caruso, D. A. Davis, Q. Shen, S. A. Odom, N. R. Sottos, S. R. White, J. S. Moore, Chem. Rev. 2009, 109, 5755;
A. L. Black, J. M. Lenhardt, S. L. Craig, J. Mater. Chem. 2011, 21, 1655;
J. R. Arino, D. Mark, Chem. Rev. 2012, 112, 5412;
J. Li, C. Nagamani, J. S. Moore, Acc. Chem. Res. 2015, 48, 2181;
Y. Liu, K. Galior, V. P.-Y. Ma, K. Salaita, Acc. Chem. Res. 2017, 50, 2915;
N. W. Fox, E. Rognin, T. A. Aljohani, R. Daly, Chem 2018, 4, 2499;
J. M. Brockman, A. T. Blanchard, V. P. Y. Ma, W. D. Derricotte, Y. Zhang, M. E. Fay, W. A. Lam, F. A. Evangelista, A. L. Mattheyses, K. Salaita, Nat. Methods 2018, 15, 115;
R. Kotani, S. Yokoyama, S. Nobusue, S. Yamaguchi, A. Osuka, H. Yabu, S. Saito, Nat. Commun. 2022, 13, 303.
T. Nishiuchi, S. Aibara, T. Yamakado, R. Kimura, S. Saito, H. Sato, T. Kubo, ChemRxiv, https://doi.org/10.26434/chemrxiv-2022-c69w8.

Auteurs

Tomohiko Nishiuchi (T)

Department of Chemistry, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.

Seito Aibara (S)

Department of Chemistry, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.

Takuya Yamakado (T)

Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake, Sakyo, Kyoto, 606-8502, Japan.

Ryo Kimura (R)

Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake, Sakyo, Kyoto, 606-8502, Japan.

Shohei Saito (S)

Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake, Sakyo, Kyoto, 606-8502, Japan.

Hiroyasu Sato (H)

Rigaku Corporation, 3-9-12 Matsubara, Akishima, Tokyo, 196-8666, Japan.

Takashi Kubo (T)

Department of Chemistry, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.
Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives, ICS-OTRI), Osaka University, Suita, Osaka, 565-0871, Japan.

Classifications MeSH