Methods for Enhanced Fluorescence Detection of Proteins by using Entrapped Gold Nanoparticles in Membranes.

fluorescence enhancement gold nanoparticles improved sensitivity nitrocellulose membrane protein assay

Journal

Current protocols
ISSN: 2691-1299
Titre abrégé: Curr Protoc
Pays: United States
ID NLM: 101773894

Informations de publication

Date de publication:
Mar 2022
Historique:
entrez: 25 3 2022
pubmed: 26 3 2022
medline: 1 4 2022
Statut: ppublish

Résumé

Measuring protein levels from biofluids can provide important insight into human health and disease during various physiological and pathological conditions. In many situations, sensitive methods are required for protein quantification because at the early stages of many diseases, proteins in biofluids are present at very low concentrations. Here, a new and simple method is presented in the form of Basic and Alternative Protocols for an immunoassay performed on a nitrocellulose membrane, followed by the addition of gold nanoparticles prior to measuring fluorescence with a microscope. The assay protocol was optimized to achieve 3D metal-enhanced fluorescence (MEF) with increased antibody-binding capacity and enhanced fluorescence signals, improving assay sensitivity. Using different concentrations of spiked fluorescently labeled IgGs in pooled normal human plasma, a lower detection limit of 29 ng/ml was achieved. This limit of detection was found to be a thousand-fold lower than the conventional 2D assay and one order of magnitude lower than when the assay was performed on a 3D membrane without MEF. This method provides an easy way to improve immunoassay sensitivity, and it can be simply transferred to other labs. It also can extend to fluorescence detection of other analytes beyond proteins. © 2022 Wiley Periodicals LLC. Basic Protocol: Assay in nitrocellulose membrane with entrapped AuNPs using commercially available AuNPs Alternative Protocol: Assay in nitrocellulose membrane with entrapped AuNPs using lab-made AuNPs.

Identifiants

pubmed: 35333454
doi: 10.1002/cpz1.404
doi:

Substances chimiques

Gold 7440-57-5
Collodion 9004-70-0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e404

Informations de copyright

© 2022 Wiley Periodicals LLC.

Références

Arvin, N. E., Dawod, M., Lamb, D. T., Anderson, J. P., Furtaw, M. D., & Kennedy, R. T. (2020). Fast immunoassay for microfluidic western blotting by direct deposition of reagents onto capture membrane. Analytical Methods, 12(12), 1606-1616. doi: 10.1039/d0ay00207k.
Aslan, K., Zhang, Y., & Geddes, C. D. (2009). Sonication-assisted metal-enhanced fluorescence-based bioassays. Analytical Chemistry, 81(12), 4713-4719. doi: 10.1021/ac802535s.
Badshah, M. A., Koh, N. Y., Zia, A. W., Abbas, N., Zahra, Z., & Saleem, M. W. (2020). Recent developments in plasmonic nanostructures for metal enhanced fluorescence-based biosensing. Nanomaterials, 10(9), 1749. doi: 10.3390/nano10091749.
Bashir, H., Wani, B. A., Ganai, B. A., & Mir, S. A., in Protein Modificomics (Eds. T. A. Dar, L. R. Singh), Academic Press, London UK (pp. 339-359). doi: 10.1016/B978-0-12-811913-6.00013-8.
Boschetti, E., D'Amato, A., Candiano, G., & Righetti, P. G. (2018). Protein biomarkers for early detection of diseases: The decisive contribution of combinatorial peptide ligand libraries. Journal of Proteomics, 188, 1-14. doi: 10.1016/j.jprot.2017.08.009.
Han, K.-C., Yang, E. G., & Ahn, D.-R. (2012). A highly sensitive, multiplex immunoassay using gold nanoparticle-enhanced signal amplification. Chemical Communications, 48(47), 5895. doi: 10.1039/c2cc31659e.
Hori, S. S., & Gambhir, S. S. (2011). Mathematical model identifies blood biomarker-based early cancer detection strategies and limitations. Science Translational Medicine, 3(109), 109ra116-109ra101. doi: 10.1126/scitranslmed.3003110.
Hristov, D., Rodriguez-Quijada, C., Gomez-Marquez, J., & Hamad-Schifferli, K. (2019). Designing paper-based immunoassays for biomedical applications. Sensors, 19(3), 554. doi: 10.3390/s19030554.
Jeong, Y. K., Yun-Min, Lee, K., & Koh, W.-G. (2018). Metal enhanced fluorescence (MEF) for biosensors: General approaches and a review of recent developments. Biosensors and Bioelectronics, 111, 102-116. doi: 10.1016/j.bios.2018.04.007.
Joyce, C., Fothergill l, S. M., & Xie, F. (2020). Recent advances in gold-based metal enhanced fluorescence platforms for diagnosis and imaging in the near-infrared. Materials Today Advances, 7, 100073. doi: 10.1016/j.mtadv.2020.100073.
Martin, M. N., Basham, J. I., Chando, P., & Eah, S.-K. (2010). Charged gold nanoparticles in non-polar solvents: 10-min synthesis and 2D self-assembly. Langmuir, 26(10), 7410-7417. doi: 10.1021/la100591h.
Momenbeitollahi, N., van der Zalm, J., Chen, A., & Li, H. (2022). Entrapping gold nanoparticles in membranes for simple-to-use enhanced fluorescence detection of proteins. Analytica Chimica Acta, 1195, 339443. doi: 10.1016/j.aca.2022.339443.
Niu, C., Song, Q., He, G., Na, N., & Ouyang, J. (2016). Near-infrared-fluorescent probes for bioapplications based on silica-coated gold nanobipyramids with distance-dependent plasmon-enhanced fluorescence. Analytical Chemistry, 88(22), 11062-11069. doi: 10.1021/acs.analchem.6b03034.
Oliveira, J. P., Prado, A. R., Keijok, W. J., Antunes, P. W. P., Yapuchura, E. R., & Guimarães, M. C. C. (2019). Impact of conjugation strategies for targeting of antibodies in gold nanoparticles for ultrasensitive detection of 17β-estradiol. Scientific Reports, 9, 13859. doi: 10.1038/s41598-019-50424-5.
Powers, A. D., & Palecek, S. P. (2012). Protein analytical assays for diagnosing, monitoring, and choosing treatment for cancer patients. Journal of Healthcare Engineering, 3(4), 503-534. doi: 10.1260/2040-2295.3.4.503.
Ribeiro, T., Baleizão, C., & Farinha, J. P. S. (2017). Artefact-free evaluation of metal enhanced fluorescence in silica coated gold nanoparticles. Scientific Reports, 7, 2440. doi: 10.1038/s41598-017-02678-0.
Ruhen, O., & Meehan, K. (2019). Tumor-derived extracellular vesicles as a novel source of protein biomarkers for cancer diagnosis and monitoring. Proteomics, 19(1-2), 1800155-1800155. doi: 10.1002/pmic.201800155.
Swierczewska, M., Lee, S., & Chen, X. (2011). The design and application of fluorophore-gold nanoparticle activatable probes. Physical Chemistry Chemical Physics, 13(21), 9929. doi: 10.1039/c0cp02967j.
Tan, G., Kantner, K., Zhang, Q., Soliman, M., Del Pino, P., Parak, W., … Pelaz, B. (2015). Conjugation of polymer-coated gold nanoparticles with antibodies-synthesis and characterization. Nanomaterials, 5(3), 1297-1316. doi: 10.3390/nano5031297.
Yang, X., Tang, Y., Alt, R. R., Xie, X., & Li, F. (2016). Emerging techniques for ultrasensitive protein analysis. The Analyst, 141(12), 3473-3481. doi: 10.1039/c6an00059b.

Auteurs

Nikan Momenbeitollahi (N)

School of Engineering, University of Guelph, Guelph, Ontario, Canada.

Joshua van der Zalm (J)

Department of Chemistry, University of Guelph, Guelph, Ontario, Canada.

Aicheng Chen (A)

Department of Chemistry, University of Guelph, Guelph, Ontario, Canada.

Huiyan Li (H)

School of Engineering, University of Guelph, Guelph, Ontario, Canada.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH