Progenitor cells derived from gene-engineered human induced pluripotent stem cells as synthetic cancer cell alternatives for in vitro pharmacology.

EGFR GLI1 TP53 c-MYC cancer stem cells in vitro pharmacology induced pluripotent stem cells progenitor cells

Journal

Biotechnology journal
ISSN: 1860-7314
Titre abrégé: Biotechnol J
Pays: Germany
ID NLM: 101265833

Informations de publication

Date de publication:
Jun 2022
Historique:
revised: 25 02 2022
received: 23 12 2021
accepted: 08 03 2022
pubmed: 26 3 2022
medline: 7 6 2022
entrez: 25 3 2022
Statut: ppublish

Résumé

Limitations in genetic stability and recapitulating accurate physiological disease properties challenge the utility of patient-derived (PD) cancer models for reproducible and translational research. A portfolio of isogenic human induced pluripotent stem cells (hiPSCs) with different pan-cancer relevant oncoprotein signatures followed by differentiation into lineage-committed progenitor cells was genetically engineered. Characterization on molecular and biological level validated successful stable genetic alterations in pluripotency state as well as upon differentiation to prove the functionality of our approach. Meanwhile proposing core molecular networks possibly involved in early dysregulation of stem cell homeostasis, the application of our cell systems in comparative substance testing indicates the potential for cancer research such as identification of augmented therapy resistance of stem cells in response to activation of distinct oncogenic signatures.

Identifiants

pubmed: 35334498
doi: 10.1002/biot.202100693
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2100693

Informations de copyright

© 2022 The Authors. Biotechnology Journal published by Wiley-VCH GmbH.

Références

Stringer, B. W., Day, B. W., D'souza, R. C. J., Jamieson, P. R., Ensbey, K. S., Bruce, Z. C., Lim, Y. C, Goasdoué, K., Offenhäuser, C., Akgül, S., Allan, S., Robertson, T., Lucas, P., Tollesson, G., Campbell, S., Winter, C., Do, H., Dobrovic, A., Inglis, P.-L., … Boyd, A. W. (2019). A reference collection of patient-derived cell line and xenograft models of proneural, classical and mesenchymal glioblastoma. Science Reports, 9, 4902.
Chabner, B. A. (2016). NCI-60 cell line screening: A radical departure in its time. JNCI: Journal of the National Cancer Institute, 108, djv388.
Atashzar, M. R., Baharlou, R., Karami, J., Abdollahi, H., Rezaei, R., Pourramezan, F., & Zoljalali Moghaddam, S. H. (2020). Cancer stem cells: A review from origin to therapeutic implications. Journal of Cellular Physiology, 235, 790-803.
Pyo, D. H., Hong, H. K., Lee, W. Y., & Cho, Y. B. (2020). Patient-derived cancer modeling for precision medicine in colorectal cancer: Beyond the cancer cell line. Cancer Biology & Therapy, 21, 495-502.
Ben-David, U., Siranosian, B., Ha, G., Tang, H., Oren, Y., Hinohara, K., Strathdee, C. A., Dempster, J., Lyons, N. J., Burns, R., Nag, A., Kugener, G., Cimini, B., Tsvetkov, P., Maruvka, Y. E., O'rourke, R., Garrity, A., Tubelli, A. A., Bandopadhayay, P., … Golub, T. R. (2018). Genetic and transcriptional evolution alters cancer cell line drug response. Nature, 560, 325-330.
Ben-David, U., Ha, G., Tseng, Y.-Y., Greenwald, N. F., Oh, C., Shih, J., Mcfarland, J. M., Wong, B., Boehm, J. S., Beroukhim, R., & Golub, T. R. (2017). Patient-derived xenografts undergo mouse-specific tumor evolution. Nature Genetics, 49, 1567-1575.
Ben-David, U., Beroukhim, R., & Golub, T. R. (2019). Genomic evolution of cancer models: Perils and opportunities. Nature Reviews Cancer, 19, 97-109.
Yu, K., Chen, B., Aran, D., Charalel, J., Yau, C., Wolf, D. M., Van ‘T Veer, L. J., Butte, A. J., Goldstein, T., & Sirota, M. (2019). Comprehensive transcriptomic analysis of cell lines as models of primary tumors across 22 tumor types. Nature Communication, 10, 3574.
Freedman, L. P., Cockburn, I. M., & Simcoe, T. S. (2015). The economics of reproducibility in preclinical research. Plos Biology, 13, e1002165.
Haibe-Kains, B., El-Hachem, N., Birkbak, N. J., Jin, A. C., Beck, A. H., Aerts, H. J. W. L., & Quackenbush, J. (2013). Inconsistency in large pharmacogenomic studies. Nature, 504, 389-393.
Mak, I. W., Evaniew, N., & Ghert, M. (2014). Lost in translation: Animal models and clinical trials in cancer treatment. American Journal of Translational Research, 6, 114-118.
Mehrjardi, N. Z., Hänggi, D., & Kahlert, U. D. (2020). Current biomarker-associated procedures of cancer modeling-a reference in the context of IDH1 mutant glioma. Cell Death & Disease, 11, 998.
Hanaford, A. R., Archer, T. C., Price, A., Kahlert, U. D., Maciaczyk, J., Nikkhah, G., Kim, J. W., Ehrenberger, T., Clemons, P. A., Dančík, V., Seashore-Ludlow, B., Viswanathan, V., Stewart, M. L., Rees, M. G., Shamji, A., Schreiber, S., Fraenkel, E., Pomeroy, S. L., Mesirov, J. P., … Raabe, E. H. (2016). DiSCoVERing innovative therapies for rare tumors: Combining genetically accurate disease models with in silico analysis to identify novel therapeutic targets. Clinical Cancer Research, 22, 3903-3914.
Pamies, D., Zurich, M.-G., & Hartung, T. (2020). Organotypic models to study human glioblastoma: Studying the beast in its ecosystem. iScience, 23, 101633.
Sancho-Martinez, I., Nivet, E., Xia, Y., Hishida, T., Aguirre, A., Ocampo, A., Ma, L., Morey, R., Krause, M. N., Zembrzycki, A., Ansorge, O., Vazquez-Ferrer, E., Dubova, I., Reddy, P., Lam, D., Hishida, Y., Wu, M.-Z., Esteban, C. R., O'leary, D., … Izpisua Belmonte, J. C. (2016). Establishment of human iPSC-based models for the study and targeting of glioma initiating cells. Nature Communication, 7, 10743.
Smith, R. C., & Tabar, V. (2019). Constructing and deconstructing cancers using human pluripotent stem cells and organoids. Cell Stem Cell, 24, 12-24.
Zhang, M., Vandana, J. J., Lacko, L., & Chen, S. (2020). Modeling cancer progression using human pluripotent stem cell-derived cells and organoids. Stem Cell Research, 49, 102063.
Uhlmann, C., Kuhn, L.-M., Tigges, J., Fritsche, E., & Kahlert, U. D. (2020). Efficient modulation of TP53 expression in human induced pluripotent stem cells. Current Protocols in Stem Cell Biology, 52, e102.
Kim, J., Hoffman, J. P., Alpaugh, R. K, Rhim, A. D., Reichert, M., Stanger, B. Z., Furth, E. E., Sepulveda, A. R., Yuan, C.-X., Won, K.-J., Donahue, G., Sands, J., Gumbs, A. A., & Zaret, K. S. (2013). An iPSC line from human pancreatic ductal adenocarcinoma undergoes early to invasive stages of pancreatic cancer progression. Cell Reports, 3, 2088-2099.
Khan, D., Nickel, A.-C., Jeising, S., Uhlmann, C., Muhammad, S., Hänggi, D., Fischer, I., & Kahlert, U. D. (2021). Testing the stability of drug resistance on cryopreserved, gene-engineered human induced pluripotent stem cells. Pharmaceuticals (Basel), 14, 919.
Tigges, J., Bielec, K., Brockerhoff, G., Hildebrandt, B., Hübenthal, U., Kapr, J., Koch, K., Teichweyde, N., Wieczorek, D., Rossi, A., & Fritsche, E. (2021). Academic application of Good Cell Culture Practice for induced pluripotent stem cells. Altex, 38, 595-614.
Kahlert, U. D., Maciaczyk, D., Doostkam, S., Orr, B. A., Simons, B., Bogiel, T., Reithmeier, T., Prinz, M., Schubert, J., Niedermann, G., Brabletz, T., Eberhart, C. G., Nikkhah, G., & Maciaczyk, J. (2012). Activation of canonical WNT/β-catenin signaling enhances in vitro motility of glioblastoma cells by activation of ZEB1 and other activators of epithelial-to-mesenchymal transition. Cancer Letters, 325, 42-53.
Nimtz, L., Hofrichter, M., Kabiri, Y., Egly, J., Theiss, S., Adjaye, J., & Fritsche E. (2016). Pluripotent stem cell-derived neurospheres as an alternative in vitro method to study neurotoxic effects on multielectrode arrays. MEA Meeting 2016 | 10th International Meeting on Substrate-Integrated Electrode Arrays.
Koch, K., Hartmann, R., Tsiampali, J., Uhlmann, C., Nickel, A.-C., He, X., Kamp, M. A., Sabel, M., Barker, R. A., Steiger, H.-J., Hänggi, D., Willbold, D., Maciaczyk, J., & Kahlert, U. D. (2020). A comparative pharmaco-metabolomic study of glutaminase inhibitors in glioma stem-like cells confirms biological effectiveness but reveals differences in target-specificity. Cell Death Discovery, 6, 20.
Capper, D., Jones, D. T. W., Sill, M., Hovestadt, V., Schrimpf, D., Sturm, D., Koelsche, C., Sahm, F., Chavez, L., Reuss, D. E., Kratz, A., Wefers, A. K., Huang, K., Pajtler, K. W., Schweizer, L., Stichel, D., Olar, A., Engel, N. W., Lindenberg, K., … Pfister, S. M. (2018). DNA methylation-based classification of central nervous system tumours. Nature, 555, 469-474.
Huang da, W., Sherman, B. T., & Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 4, 44-57.
Huang da, W., Sherman, B. T., & Lempicki, R. A. (2009). Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Research, 37, 1-13.
Krebs, A., Nyffeler, J., Rahnenführer, J., & Leist, M. (2018). Normalization of data for viability and relative cell function curves. Altex, 35, 268-271.
Nickel, A. C., Picard, D., Qin, N., Wolter, M., Kaulich, K., Hewera, M., Pauck, D., Marquardt, V., Torga, G., Muhammad, S., Zhang, W., Schnell, O., Steiger, H.-J., Hänggi, D., Fritsche, E., Her, N.-G., Nam, D.-H., Carro, M. S., Remke, M., … Kahlert, U. D. (2021). Longitudinal stability of molecular alterations and drug response profiles in tumor spheroid cell lines enables reproducible analyses. Biomedicine & Pharmacotherapy, 144, 112278.
Boyer, L. A., Lee, T. I., Cole, M. F., Johnstone, S. E., Levine, S. S., Zucker, J. P., Guenther, M. G., Kumar, R. M., Murray, H. L., Jenner, R. G., Gifford, D. K., Melton, D. A., Jaenisch, R., & Young, R. A. (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 122, 947-956.
Pamies, D., Bal-Price, A., Simeonov, A., Tagle, D., Allen, D., Gerhold, D., Yin, D., Pistollato, F., Inutsuka, T., Sullivan, K., Stacey, G., Salem, H., Leist, M., Daneshian, M., Vemuri, M. C., McFarland, R., Coecke, S., Fitzpatrick, S. C., Lakshmipathy, U., … Hartung, T. (2017). Good cell culture practice for stem cells and stem-cell-derived models. Altex, 34, 95-132.
Koga, T., Chaim, I. A., Benitez, J. A., Markmiller, S., Parisian, A. D., Hevner, R. F., Turner, K. M., Hessenauer, F. M., D'antonio, M., Nguyen, N.-P. D., Saberi, S., Ma, J., Miki, S., Boyer, A. D., Ravits, J., Frazer, K. A., Bafna, V., Chen, C. C., Mischel, P. S., … Furnari, F. B. (2020). Longitudinal assessment of tumor development using cancer avatars derived from genetically engineered pluripotent stem cells. Nature Communication, 11, 550.
Kandoth, C., Mclellan, M. D., Vandin, F., Ye, K., Niu, B., Lu, C., Xie, M., Zhang, Q., Mcmichael, J. F., Wyczalkowski, M. A., Leiserson, M. D. M., Miller, C. A., Welch, J. S., Walter, M. J., Wendl, M. C., Ley, T. J., Wilson, R. K., Raphael, B. J., & Ding, L. (2013). Mutational landscape and significance across 12 major cancer types. Nature, 502, 333-339.
Massagué, J. (2008). TGFbeta in cancer. Cell, 134, 215-230.
Tishler, R. B., Lamppu, D. M., Park, S., & Price, B. D. (1995). Microtubule-active drugs taxol, vinblastine, and nocodazole increase the levels of transcriptionally active p53. Cancer Research, 55, 6021-6025.
Cheng, Y.-W., Liao, L.-D., Yang, Q., Chen, Y., Nie, P.-J., Zhang, X.-J., Xie, J.-J., Shan, B.-E., Zhao, L.-M., Xu, L.-Y., & Li, E.-M. (2018). The histone deacetylase inhibitor panobinostat exerts anticancer effects on esophageal squamous cell carcinoma cells by inducing cell cycle arrest. Cell Biochemistry and Function, 36, 398-407.
Greve, G., Schiffmann, I., Pfeifer, D., Pantic, M., Schüler, J., & Lübbert, M. (2015). The pan-HDAC inhibitor panobinostat acts as a sensitizer for erlotinib activity in EGFR-mutated and -wildtype non-small cell lung cancer cells. BMC Cancer, 15, 947.
Sonnemann, J., Marx, C., Becker, S., Wittig, S., Palani, C. D., Krämer, O. H., & Beck, J. F. (2014). p53-dependent and p53-independent anticancer effects of different histone deacetylase inhibitors. British Journal of Cancer, 110, 656-667.
Falkenberg, K. J., Newbold, A., Gould, C. M., Luu, J., Trapani, J. A., Matthews, G. M., Simpson, K. J., & Johnstone, R. W. (2016). A genome scale RNAi screen identifies GLI1 as a novel gene regulating vorinostat sensitivity. Cell Death and Differentiation, 23, 1209-1218.
Staunstrup, N. H., Moldt, B., Mátés, L., Villesen, P., Jakobsen, M., Ivics, Z., Izsvák, Z., & Mikkelsen, J. G. (2009). Hybrid lentivirus-transposon vectors with a random integration profile in human cells. Molecular Therapy, 17, 1205-1214.
Woods, N.-B., Muessig, A., Schmidt, M., Flygare, J., Olsson, K., Salmon, P., Trono, D., von Kalle, C., & Karlsson, S. (2003). Lentiviral vector transduction of NOD/SCID repopulating cells results in multiple vector integrations per transduced cell: Risk of insertional mutagenesis. Blood, 101, 1284-1289.

Auteurs

Constanze Uhlmann (C)

Department for Neurosurgery, Medical Faculty and University Medical Center Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany.

Ann-Christin Nickel (AC)

Department for Neurosurgery, Medical Faculty and University Medical Center Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany.

Daniel Picard (D)

Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany.
Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany.
Department of Neuropathology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.

Andrea Rossi (A)

Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.

Guanzhang Li (G)

Beijing Neurosurgical Institute, Capital Medical University, Beijing, P. R. China.

Barbara Hildebrandt (B)

Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany.

Gabriele Brockerhoff (G)

Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.

Farina Bendt (F)

Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.

Ulrike Hübenthal (U)

Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.

Michael Hewera (M)

Department for Neurosurgery, Medical Faculty and University Medical Center Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany.

Hans-Jakob Steiger (HJ)

Department for Neurosurgery, Medical Faculty and University Medical Center Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany.

Dagmar Wieczorek (D)

Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany.

Aristoteles Perrakis (A)

Molecular and Experimental Surgery, University Clinic for General, Visceral and Vascular Surgery, University Medical Center Magdeburg and Faculty of Medicine, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.

Wei Zhang (W)

Beijing Neurosurgical Institute, Capital Medical University, Beijing, P. R. China.

Marc Remke (M)

Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany.
Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany.
Department of Neuropathology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.

Katharina Koch (K)

Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.

Julia Tigges (J)

Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.

Roland S Croner (RS)

Molecular and Experimental Surgery, University Clinic for General, Visceral and Vascular Surgery, University Medical Center Magdeburg and Faculty of Medicine, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.

Ellen Fritsche (E)

Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany.

Ulf D Kahlert (UD)

Molecular and Experimental Surgery, University Clinic for General, Visceral and Vascular Surgery, University Medical Center Magdeburg and Faculty of Medicine, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH