Progenitor cells derived from gene-engineered human induced pluripotent stem cells as synthetic cancer cell alternatives for in vitro pharmacology.
EGFR
GLI1
TP53
c-MYC
cancer stem cells
in vitro pharmacology
induced pluripotent stem cells
progenitor cells
Journal
Biotechnology journal
ISSN: 1860-7314
Titre abrégé: Biotechnol J
Pays: Germany
ID NLM: 101265833
Informations de publication
Date de publication:
Jun 2022
Jun 2022
Historique:
revised:
25
02
2022
received:
23
12
2021
accepted:
08
03
2022
pubmed:
26
3
2022
medline:
7
6
2022
entrez:
25
3
2022
Statut:
ppublish
Résumé
Limitations in genetic stability and recapitulating accurate physiological disease properties challenge the utility of patient-derived (PD) cancer models for reproducible and translational research. A portfolio of isogenic human induced pluripotent stem cells (hiPSCs) with different pan-cancer relevant oncoprotein signatures followed by differentiation into lineage-committed progenitor cells was genetically engineered. Characterization on molecular and biological level validated successful stable genetic alterations in pluripotency state as well as upon differentiation to prove the functionality of our approach. Meanwhile proposing core molecular networks possibly involved in early dysregulation of stem cell homeostasis, the application of our cell systems in comparative substance testing indicates the potential for cancer research such as identification of augmented therapy resistance of stem cells in response to activation of distinct oncogenic signatures.
Identifiants
pubmed: 35334498
doi: 10.1002/biot.202100693
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2100693Informations de copyright
© 2022 The Authors. Biotechnology Journal published by Wiley-VCH GmbH.
Références
Stringer, B. W., Day, B. W., D'souza, R. C. J., Jamieson, P. R., Ensbey, K. S., Bruce, Z. C., Lim, Y. C, Goasdoué, K., Offenhäuser, C., Akgül, S., Allan, S., Robertson, T., Lucas, P., Tollesson, G., Campbell, S., Winter, C., Do, H., Dobrovic, A., Inglis, P.-L., … Boyd, A. W. (2019). A reference collection of patient-derived cell line and xenograft models of proneural, classical and mesenchymal glioblastoma. Science Reports, 9, 4902.
Chabner, B. A. (2016). NCI-60 cell line screening: A radical departure in its time. JNCI: Journal of the National Cancer Institute, 108, djv388.
Atashzar, M. R., Baharlou, R., Karami, J., Abdollahi, H., Rezaei, R., Pourramezan, F., & Zoljalali Moghaddam, S. H. (2020). Cancer stem cells: A review from origin to therapeutic implications. Journal of Cellular Physiology, 235, 790-803.
Pyo, D. H., Hong, H. K., Lee, W. Y., & Cho, Y. B. (2020). Patient-derived cancer modeling for precision medicine in colorectal cancer: Beyond the cancer cell line. Cancer Biology & Therapy, 21, 495-502.
Ben-David, U., Siranosian, B., Ha, G., Tang, H., Oren, Y., Hinohara, K., Strathdee, C. A., Dempster, J., Lyons, N. J., Burns, R., Nag, A., Kugener, G., Cimini, B., Tsvetkov, P., Maruvka, Y. E., O'rourke, R., Garrity, A., Tubelli, A. A., Bandopadhayay, P., … Golub, T. R. (2018). Genetic and transcriptional evolution alters cancer cell line drug response. Nature, 560, 325-330.
Ben-David, U., Ha, G., Tseng, Y.-Y., Greenwald, N. F., Oh, C., Shih, J., Mcfarland, J. M., Wong, B., Boehm, J. S., Beroukhim, R., & Golub, T. R. (2017). Patient-derived xenografts undergo mouse-specific tumor evolution. Nature Genetics, 49, 1567-1575.
Ben-David, U., Beroukhim, R., & Golub, T. R. (2019). Genomic evolution of cancer models: Perils and opportunities. Nature Reviews Cancer, 19, 97-109.
Yu, K., Chen, B., Aran, D., Charalel, J., Yau, C., Wolf, D. M., Van ‘T Veer, L. J., Butte, A. J., Goldstein, T., & Sirota, M. (2019). Comprehensive transcriptomic analysis of cell lines as models of primary tumors across 22 tumor types. Nature Communication, 10, 3574.
Freedman, L. P., Cockburn, I. M., & Simcoe, T. S. (2015). The economics of reproducibility in preclinical research. Plos Biology, 13, e1002165.
Haibe-Kains, B., El-Hachem, N., Birkbak, N. J., Jin, A. C., Beck, A. H., Aerts, H. J. W. L., & Quackenbush, J. (2013). Inconsistency in large pharmacogenomic studies. Nature, 504, 389-393.
Mak, I. W., Evaniew, N., & Ghert, M. (2014). Lost in translation: Animal models and clinical trials in cancer treatment. American Journal of Translational Research, 6, 114-118.
Mehrjardi, N. Z., Hänggi, D., & Kahlert, U. D. (2020). Current biomarker-associated procedures of cancer modeling-a reference in the context of IDH1 mutant glioma. Cell Death & Disease, 11, 998.
Hanaford, A. R., Archer, T. C., Price, A., Kahlert, U. D., Maciaczyk, J., Nikkhah, G., Kim, J. W., Ehrenberger, T., Clemons, P. A., Dančík, V., Seashore-Ludlow, B., Viswanathan, V., Stewart, M. L., Rees, M. G., Shamji, A., Schreiber, S., Fraenkel, E., Pomeroy, S. L., Mesirov, J. P., … Raabe, E. H. (2016). DiSCoVERing innovative therapies for rare tumors: Combining genetically accurate disease models with in silico analysis to identify novel therapeutic targets. Clinical Cancer Research, 22, 3903-3914.
Pamies, D., Zurich, M.-G., & Hartung, T. (2020). Organotypic models to study human glioblastoma: Studying the beast in its ecosystem. iScience, 23, 101633.
Sancho-Martinez, I., Nivet, E., Xia, Y., Hishida, T., Aguirre, A., Ocampo, A., Ma, L., Morey, R., Krause, M. N., Zembrzycki, A., Ansorge, O., Vazquez-Ferrer, E., Dubova, I., Reddy, P., Lam, D., Hishida, Y., Wu, M.-Z., Esteban, C. R., O'leary, D., … Izpisua Belmonte, J. C. (2016). Establishment of human iPSC-based models for the study and targeting of glioma initiating cells. Nature Communication, 7, 10743.
Smith, R. C., & Tabar, V. (2019). Constructing and deconstructing cancers using human pluripotent stem cells and organoids. Cell Stem Cell, 24, 12-24.
Zhang, M., Vandana, J. J., Lacko, L., & Chen, S. (2020). Modeling cancer progression using human pluripotent stem cell-derived cells and organoids. Stem Cell Research, 49, 102063.
Uhlmann, C., Kuhn, L.-M., Tigges, J., Fritsche, E., & Kahlert, U. D. (2020). Efficient modulation of TP53 expression in human induced pluripotent stem cells. Current Protocols in Stem Cell Biology, 52, e102.
Kim, J., Hoffman, J. P., Alpaugh, R. K, Rhim, A. D., Reichert, M., Stanger, B. Z., Furth, E. E., Sepulveda, A. R., Yuan, C.-X., Won, K.-J., Donahue, G., Sands, J., Gumbs, A. A., & Zaret, K. S. (2013). An iPSC line from human pancreatic ductal adenocarcinoma undergoes early to invasive stages of pancreatic cancer progression. Cell Reports, 3, 2088-2099.
Khan, D., Nickel, A.-C., Jeising, S., Uhlmann, C., Muhammad, S., Hänggi, D., Fischer, I., & Kahlert, U. D. (2021). Testing the stability of drug resistance on cryopreserved, gene-engineered human induced pluripotent stem cells. Pharmaceuticals (Basel), 14, 919.
Tigges, J., Bielec, K., Brockerhoff, G., Hildebrandt, B., Hübenthal, U., Kapr, J., Koch, K., Teichweyde, N., Wieczorek, D., Rossi, A., & Fritsche, E. (2021). Academic application of Good Cell Culture Practice for induced pluripotent stem cells. Altex, 38, 595-614.
Kahlert, U. D., Maciaczyk, D., Doostkam, S., Orr, B. A., Simons, B., Bogiel, T., Reithmeier, T., Prinz, M., Schubert, J., Niedermann, G., Brabletz, T., Eberhart, C. G., Nikkhah, G., & Maciaczyk, J. (2012). Activation of canonical WNT/β-catenin signaling enhances in vitro motility of glioblastoma cells by activation of ZEB1 and other activators of epithelial-to-mesenchymal transition. Cancer Letters, 325, 42-53.
Nimtz, L., Hofrichter, M., Kabiri, Y., Egly, J., Theiss, S., Adjaye, J., & Fritsche E. (2016). Pluripotent stem cell-derived neurospheres as an alternative in vitro method to study neurotoxic effects on multielectrode arrays. MEA Meeting 2016 | 10th International Meeting on Substrate-Integrated Electrode Arrays.
Koch, K., Hartmann, R., Tsiampali, J., Uhlmann, C., Nickel, A.-C., He, X., Kamp, M. A., Sabel, M., Barker, R. A., Steiger, H.-J., Hänggi, D., Willbold, D., Maciaczyk, J., & Kahlert, U. D. (2020). A comparative pharmaco-metabolomic study of glutaminase inhibitors in glioma stem-like cells confirms biological effectiveness but reveals differences in target-specificity. Cell Death Discovery, 6, 20.
Capper, D., Jones, D. T. W., Sill, M., Hovestadt, V., Schrimpf, D., Sturm, D., Koelsche, C., Sahm, F., Chavez, L., Reuss, D. E., Kratz, A., Wefers, A. K., Huang, K., Pajtler, K. W., Schweizer, L., Stichel, D., Olar, A., Engel, N. W., Lindenberg, K., … Pfister, S. M. (2018). DNA methylation-based classification of central nervous system tumours. Nature, 555, 469-474.
Huang da, W., Sherman, B. T., & Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 4, 44-57.
Huang da, W., Sherman, B. T., & Lempicki, R. A. (2009). Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Research, 37, 1-13.
Krebs, A., Nyffeler, J., Rahnenführer, J., & Leist, M. (2018). Normalization of data for viability and relative cell function curves. Altex, 35, 268-271.
Nickel, A. C., Picard, D., Qin, N., Wolter, M., Kaulich, K., Hewera, M., Pauck, D., Marquardt, V., Torga, G., Muhammad, S., Zhang, W., Schnell, O., Steiger, H.-J., Hänggi, D., Fritsche, E., Her, N.-G., Nam, D.-H., Carro, M. S., Remke, M., … Kahlert, U. D. (2021). Longitudinal stability of molecular alterations and drug response profiles in tumor spheroid cell lines enables reproducible analyses. Biomedicine & Pharmacotherapy, 144, 112278.
Boyer, L. A., Lee, T. I., Cole, M. F., Johnstone, S. E., Levine, S. S., Zucker, J. P., Guenther, M. G., Kumar, R. M., Murray, H. L., Jenner, R. G., Gifford, D. K., Melton, D. A., Jaenisch, R., & Young, R. A. (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 122, 947-956.
Pamies, D., Bal-Price, A., Simeonov, A., Tagle, D., Allen, D., Gerhold, D., Yin, D., Pistollato, F., Inutsuka, T., Sullivan, K., Stacey, G., Salem, H., Leist, M., Daneshian, M., Vemuri, M. C., McFarland, R., Coecke, S., Fitzpatrick, S. C., Lakshmipathy, U., … Hartung, T. (2017). Good cell culture practice for stem cells and stem-cell-derived models. Altex, 34, 95-132.
Koga, T., Chaim, I. A., Benitez, J. A., Markmiller, S., Parisian, A. D., Hevner, R. F., Turner, K. M., Hessenauer, F. M., D'antonio, M., Nguyen, N.-P. D., Saberi, S., Ma, J., Miki, S., Boyer, A. D., Ravits, J., Frazer, K. A., Bafna, V., Chen, C. C., Mischel, P. S., … Furnari, F. B. (2020). Longitudinal assessment of tumor development using cancer avatars derived from genetically engineered pluripotent stem cells. Nature Communication, 11, 550.
Kandoth, C., Mclellan, M. D., Vandin, F., Ye, K., Niu, B., Lu, C., Xie, M., Zhang, Q., Mcmichael, J. F., Wyczalkowski, M. A., Leiserson, M. D. M., Miller, C. A., Welch, J. S., Walter, M. J., Wendl, M. C., Ley, T. J., Wilson, R. K., Raphael, B. J., & Ding, L. (2013). Mutational landscape and significance across 12 major cancer types. Nature, 502, 333-339.
Massagué, J. (2008). TGFbeta in cancer. Cell, 134, 215-230.
Tishler, R. B., Lamppu, D. M., Park, S., & Price, B. D. (1995). Microtubule-active drugs taxol, vinblastine, and nocodazole increase the levels of transcriptionally active p53. Cancer Research, 55, 6021-6025.
Cheng, Y.-W., Liao, L.-D., Yang, Q., Chen, Y., Nie, P.-J., Zhang, X.-J., Xie, J.-J., Shan, B.-E., Zhao, L.-M., Xu, L.-Y., & Li, E.-M. (2018). The histone deacetylase inhibitor panobinostat exerts anticancer effects on esophageal squamous cell carcinoma cells by inducing cell cycle arrest. Cell Biochemistry and Function, 36, 398-407.
Greve, G., Schiffmann, I., Pfeifer, D., Pantic, M., Schüler, J., & Lübbert, M. (2015). The pan-HDAC inhibitor panobinostat acts as a sensitizer for erlotinib activity in EGFR-mutated and -wildtype non-small cell lung cancer cells. BMC Cancer, 15, 947.
Sonnemann, J., Marx, C., Becker, S., Wittig, S., Palani, C. D., Krämer, O. H., & Beck, J. F. (2014). p53-dependent and p53-independent anticancer effects of different histone deacetylase inhibitors. British Journal of Cancer, 110, 656-667.
Falkenberg, K. J., Newbold, A., Gould, C. M., Luu, J., Trapani, J. A., Matthews, G. M., Simpson, K. J., & Johnstone, R. W. (2016). A genome scale RNAi screen identifies GLI1 as a novel gene regulating vorinostat sensitivity. Cell Death and Differentiation, 23, 1209-1218.
Staunstrup, N. H., Moldt, B., Mátés, L., Villesen, P., Jakobsen, M., Ivics, Z., Izsvák, Z., & Mikkelsen, J. G. (2009). Hybrid lentivirus-transposon vectors with a random integration profile in human cells. Molecular Therapy, 17, 1205-1214.
Woods, N.-B., Muessig, A., Schmidt, M., Flygare, J., Olsson, K., Salmon, P., Trono, D., von Kalle, C., & Karlsson, S. (2003). Lentiviral vector transduction of NOD/SCID repopulating cells results in multiple vector integrations per transduced cell: Risk of insertional mutagenesis. Blood, 101, 1284-1289.