Deterministic Lateral Displacement Microfluidic Chip for Minicell Purification.
Escherichia coli
bacterial cell separation
deterministic lateral displacement
microfluidics
minicells
Journal
Micromachines
ISSN: 2072-666X
Titre abrégé: Micromachines (Basel)
Pays: Switzerland
ID NLM: 101640903
Informations de publication
Date de publication:
25 Feb 2022
25 Feb 2022
Historique:
received:
31
01
2022
revised:
19
02
2022
accepted:
23
02
2022
entrez:
26
3
2022
pubmed:
27
3
2022
medline:
27
3
2022
Statut:
epublish
Résumé
Deterministic lateral displacement (DLD) is a well-known microfluidic technique for particle separation with high potential for integration into bioreactors for therapeutic applications. Separation is based on the interaction of suspended particles in a liquid flowing through an array of microposts under low Reynolds conditions. This technique has been used previously to separate living cells of different sizes but similar shapes. Here, we present a DLD microchip to separate rod-shaped bacterial cells up to 10 µm from submicron spherical minicells. We designed two microchips with 50 and 25 µm cylindrical posts and spacing of 15 and 2.5 µm, respectively. Soft lithography was used to fabricate polydimethylsiloxane (PDMS) chips, which were assessed at different flow rates for their separation potential. The results showed negligible shear effect on the separation efficiency for both designs. However, the higher flow rates resulted in faster separation. We optimized the geometrical parameters including the shape, size, angle and critical radii of the posts and the width and depth of the channel as well as the number of arrays to achieve separation efficiency as high as 75.5% on a single-stage separation. These results pave the way for high-throughput separation and purification modules with the potential of direct integration into bioreactors.
Identifiants
pubmed: 35334657
pii: mi13030365
doi: 10.3390/mi13030365
pmc: PMC8951003
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : ERC
ID : 816006 , 101002044
Références
Lab Chip. 2011 Apr 7;11(7):1326-32
pubmed: 21331436
Anal Chem. 2003 Dec 15;75(24):6963-7
pubmed: 14670059
Nat Commun. 2020 Feb 6;11(1):743
pubmed: 32029744
J Microbiol Biotechnol. 2015 Apr;25(4):554-8
pubmed: 25341464
Lab Chip. 2006 May;6(5):655-8
pubmed: 16652181
Science. 2004 May 14;304(5673):987-90
pubmed: 15143275
Anal Chem. 2020 Jul 7;92(13):9281-9286
pubmed: 32450685
J Microbiol Methods. 2013 Mar;92(3):340-3
pubmed: 23234883
Anal Chem. 1998 Dec 1;70(23):4974-84
pubmed: 21644679
Biomicrofluidics. 2013 Jan 07;7(1):11801
pubmed: 24396522
Lab Chip. 2014 Nov 7;14(21):4250-62
pubmed: 25209150
Sci Rep. 2017 Aug 3;7(1):7261
pubmed: 28775370
J Bacteriol. 2016 Mar 31;198(8):1186-95
pubmed: 26833418
Cancer Cell. 2007 May;11(5):431-45
pubmed: 17482133
Anal Chem. 2003 Dec 15;75(24):6761-8
pubmed: 14670033
SLAS Technol. 2018 Aug;23(4):338-351
pubmed: 29361868
Nat Nanotechnol. 2016 Nov;11(11):936-940
pubmed: 27479757
J Chromatogr A. 2004 Feb 13;1026(1-2):129-41
pubmed: 14870712
Cancer Lett. 2020 Oct 28;491:11-21
pubmed: 32721550
Nanomicro Lett. 2019 Sep 17;11(1):77
pubmed: 34138050
Biotechnol Adv. 2022 Jan-Feb;54:107814
pubmed: 34389465
Nature. 2006 Jul 27;442(7101):368-73
pubmed: 16871203
Micromachines (Basel). 2019 Jun 12;10(6):
pubmed: 31212873
Nat Commun. 2013;4:1590
pubmed: 23481398
Lab Chip. 2009 Sep 21;9(18):2698-706
pubmed: 19704986
Micromachines (Basel). 2020 Dec 30;12(1):
pubmed: 33396630