Diet and Respiratory Infections: Specific or Generalized Associations?
coffee
dietary behaviors
epidemiology COVID-19
influenza
nutrition
pneumonia
respiratory infections
tea
Journal
Nutrients
ISSN: 2072-6643
Titre abrégé: Nutrients
Pays: Switzerland
ID NLM: 101521595
Informations de publication
Date de publication:
11 Mar 2022
11 Mar 2022
Historique:
received:
20
12
2021
revised:
06
03
2022
accepted:
07
03
2022
entrez:
26
3
2022
pubmed:
27
3
2022
medline:
31
3
2022
Statut:
epublish
Résumé
Background: Based on our recently reported associations between specific dietary behaviors and the risk of COVID-19 infection in the UK Biobank (UKB) cohort, we further investigate whether these associations are specific to COVID-19 or extend to other respiratory infections. Methods: Pneumonia and influenza diagnoses were retrieved from hospital and death record data linked to the UKB. Baseline, self-reported (2006−2010) dietary behaviors included being breastfed as a baby and intakes of coffee, tea, oily fish, processed meat, red meat (unprocessed), fruit, and vegetables. Logistic regression estimated the odds of pneumonia/influenza from baseline to 31 December 2019 with each dietary component, adjusting for baseline socio-demographic factors, medical history, and other lifestyle behaviors. We considered effect modification by sex and genetic factors related to pneumonia, COVID-19, and caffeine metabolism. Results: Of 470,853 UKB participants, 4.0% had pneumonia and 0.2% had influenza during follow up. Increased consumption of coffee, tea, oily fish, and fruit at baseline were significantly and independently associated with a lower risk of future pneumonia events. Increased consumption of red meat was associated with a significantly higher risk. After multivariable adjustment, the odds of pneumonia (p ≤ 0.001 for all) were lower by 6−9% when consuming 1−3 cups of coffee/day (vs. <1 cup/day), 8−11% when consuming 1+ cups of tea/day (vs. <1 cup/day), 10−12% when consuming oily fish in higher quartiles (vs. the lowest quartile—Q1), and 9−14% when consuming fruit in higher quartiles (vs. Q1); it was 9% higher when consuming red meat in the fourth quartile (vs. Q1). Similar patterns of associations were observed for influenza but only associations with tea and oily fish met statistical significance. The association between fruit and pneumonia risk was stronger in women than in men (p = 0.001 for interaction). Conclusions: In the UKB, consumption of coffee, tea, oily fish, and fruit were favorably associated with incident pneumonia/influenza and red meat was adversely associated. Findings for coffee parallel those we reported previously for COVID-19 infection, while other findings are specific to these more common respiratory infections.
Identifiants
pubmed: 35334852
pii: nu14061195
doi: 10.3390/nu14061195
pmc: PMC8954090
pii:
doi:
Substances chimiques
Coffee
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : NIA NIH HHS
ID : K01 AG053477
Pays : United States
Organisme : Medical Research Council
ID : MC_PC_17228
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_QA137853
Pays : United Kingdom
Organisme : NIA NIH HHS
ID : K01AG053477
Pays : United States
Références
Nutrients. 2021 Jun 20;13(6):
pubmed: 34203027
Elife. 2021 May 04;10:
pubmed: 33942721
Eur J Nutr. 2021 Dec;60(8):4189-4202
pubmed: 34550452
Nutrients. 2019 Aug 16;11(8):
pubmed: 31426423
Respiration. 2017;94(3):299-311
pubmed: 28738364
Ann Epidemiol. 2015 Jul;25(7):512-518.e3
pubmed: 25900254
J Nutr. 2021 Jul 1;151(7):1854-1878
pubmed: 33982105
Crit Rev Food Sci Nutr. 2020;60(13):2174-2211
pubmed: 31267783
J Agric Food Chem. 2005 May 18;53(10):4311-4
pubmed: 15884876
J Food Sci. 2013 Jun;78 Suppl 1:A18-25
pubmed: 23789932
Annu Rev Genet. 2017 Nov 27;51:241-263
pubmed: 28853921
Immunobiology. 2018 Dec;223(12):818-825
pubmed: 30146130
Ann Intern Med. 2017 Aug 15;167(4):228-235
pubmed: 28693036
Hum Mol Genet. 2016 Dec 15;25(24):5472-5482
pubmed: 27702941
Am J Clin Nutr. 2012 Dec;96(6):1429-36
pubmed: 23134881
N Engl J Med. 2020 Oct 15;383(16):1522-1534
pubmed: 32558485
Am J Clin Nutr. 2018 Jul 1;108(1):136-155
pubmed: 29931038
Pharmacol Rev. 1999 Mar;51(1):83-133
pubmed: 10049999
Front Nutr. 2020 Nov 19;7:597600
pubmed: 33330597
JAMA Intern Med. 2018 Aug 1;178(8):1086-1097
pubmed: 29971434
Nutrition. 2021 Jan;81:110900
pubmed: 32738510
Vaccine. 2007 Jun 28;25(27):5086-96
pubmed: 17544181
Cell. 2016 Oct 20;167(3):643-656.e17
pubmed: 27768888
J Virol. 2012 Mar;86(6):2900-10
pubmed: 22258243
Mod Pathol. 2020 Nov;33(11):2128-2138
pubmed: 32572155
Nat Commun. 2017 Sep 19;8(1):599
pubmed: 28928442
Curr Med Chem. 2016;23(42):4773-4783
pubmed: 27881069
Proc Natl Acad Sci U S A. 2003 May 13;100(10):6009-14
pubmed: 12719524
Epidemiol Infect. 2008 Feb;136(2):232-40
pubmed: 17445319
Nutr Clin Pract. 2009 Aug-Sep;24(4):487-99
pubmed: 19605803
PLoS Med. 2021 Mar 1;18(3):e1003550
pubmed: 33647033
Clin Respir J. 2018 Mar;12(3):1283-1294
pubmed: 28671769
J Nutr. 2020 Oct 12;150(10):2772-2788
pubmed: 32805014
Handb Exp Pharmacol. 2011;(200):439-56
pubmed: 20859807
Int J Immunopharmacol. 1990;12(1):129-34
pubmed: 2303315
Aging Male. 2020 Dec;23(5):1416-1424
pubmed: 32508193
Eur J Epidemiol. 2018 Feb;33(2):183-200
pubmed: 29380105
Eur J Epidemiol. 2019 Oct;34(10):917-926
pubmed: 31392470
BMJ Nutr Prev Health. 2020 May 20;3(1):74-92
pubmed: 33230497
Nature. 2009 Oct 29;461(7268):1287-91
pubmed: 19865173
Influenza Other Respir Viruses. 2018 Jan;12(1):22-29
pubmed: 29197154
Twin Res Hum Genet. 2021 Jun;24(3):145-154
pubmed: 34340725
Nutrients. 2020 May 19;12(5):
pubmed: 32438620
J Exp Med. 2009 Jan 16;206(1):15-23
pubmed: 19103881
Curr Pharm Des. 2013;19(34):6141-7
pubmed: 23448443
Am J Clin Nutr. 2005 Sep;82(3):668-74
pubmed: 16155282
Int J Food Sci Nutr. 2014 Dec;65(8):925-36
pubmed: 25046596
Eur J Clin Invest. 2002 Mar;32 Suppl 1:70-8
pubmed: 11886435
Ann Intern Med. 2017 Aug 15;167(4):236-247
pubmed: 28693038
Nature. 2021 Mar;591(7848):92-98
pubmed: 33307546
J Nutr. 2001 Feb;131(2S-2):616S-633S; discussion 633S-635S
pubmed: 11160594
J Nutr Sci. 2018 Feb 1;7:e6
pubmed: 29430297
Biomed Pharmacother. 2020 Aug;128:110296
pubmed: 32480226
Infect Control Hosp Epidemiol. 2014 Oct;35 Suppl 3:S107-15
pubmed: 25222889
BMC Med. 2021 Mar 2;19(1):53
pubmed: 33648505
Cell. 2020 Dec 10;183(6):1479-1495.e20
pubmed: 33171100
Adv Nutr. 2016 Jan 15;7(1):102-11
pubmed: 26773018
Nature. 2021 Dec;600(7889):472-477
pubmed: 34237774
Science. 2021 Nov 26;374(6571):1127-1133
pubmed: 34822289
Nature. 2018 Oct;562(7726):203-209
pubmed: 30305743
Am J Epidemiol. 2017 Nov 1;186(9):1026-1034
pubmed: 28641372
Lancet Infect Dis. 2017 Nov;17(11):1133-1161
pubmed: 28843578
Respir Med. 2019 Apr;150:81-84
pubmed: 30961956
Lancet Respir Med. 2019 Jan;7(1):69-89
pubmed: 30553848
Adv Nutr. 2012 Jul 01;3(4):506-16
pubmed: 22797986
Prev Med. 2019 Jun;123:270-277
pubmed: 30951734
Transfus Med Hemother. 2012 Jun;39(3):182-186
pubmed: 22851933
J Transl Med. 2021 Oct 21;19(1):440
pubmed: 34674725
Am J Hum Genet. 2021 Jan 7;108(1):194-201
pubmed: 33357513
PLoS One. 2021 Mar 4;16(3):e0247461
pubmed: 33661992
Pneumonia (Nathan). 2017 Oct 5;9:15
pubmed: 29043150
Int J Mol Sci. 2021 May 22;22(11):
pubmed: 34067243
Nat Genet. 2021 Jun;53(6):801-808
pubmed: 33888907
J Nutr. 2015 Mar;145(3):595-604
pubmed: 25733477
BMJ. 2013 Aug 23;347:f5061
pubmed: 23974637
J Med Virol. 2021 Mar;93(3):1449-1458
pubmed: 32790106
J Caffeine Res. 2017 Jun 1;7(2):39-52
pubmed: 28660093
Cell Death Differ. 2020 May;27(5):1451-1454
pubmed: 32205856
Nutrition. 2007 Mar;23(3):196-202
pubmed: 17236748
Proc Nutr Soc. 2013 Aug;72(3):326-36
pubmed: 23668691