Vaccine Licensure in the Absence of Human Efficacy Data.
Animal Rule
Ebola
Marburg
filovirus
licensure
regulatory
vaccine
Journal
Vaccines
ISSN: 2076-393X
Titre abrégé: Vaccines (Basel)
Pays: Switzerland
ID NLM: 101629355
Informations de publication
Date de publication:
26 Feb 2022
26 Feb 2022
Historique:
received:
14
01
2022
revised:
18
02
2022
accepted:
19
02
2022
entrez:
26
3
2022
pubmed:
27
3
2022
medline:
27
3
2022
Statut:
epublish
Résumé
Clinical vaccine development and regulatory approval generally occurs in a linear, sequential manner: Phase 1: safety, immunogenicity; Phase 2: immunogenicity, safety, dose ranging, and preliminary efficacy; Phase 3: definitive efficacy, safety, lot consistency; and following regulatory approval, Phase 4: post-marketing safety and effectiveness. For candidate filovirus vaccines, where correlates of protection have not been identified, and phase 2 and 3 efficacy of disease prevention trials untenable, large and/or protracted, each trial may span decades, with full licensure expected only after several decades of development. Given the urgent unmet need for new Marburg virus and Ebola Sudan virus vaccines, the Sabin Vaccine Institute hosted a key stakeholder virtual meeting in May 2021 to explore the possibility of licensure by use of an "animal rule-like" licensure process, based on a risk/benefit assessment specific to regional needs and informed by epidemiology. This may be appropriate for diseases where there are no or limited treatment options, and those prone to sporadic outbreaks with high rates of transmission, morbidity, and mortality. The discussion focused on two contexts: licensure within the Ugandan regulatory environment, a high burden country where Ebola vaccine trials are ongoing, and licensure by the United States FDA-a well-resourced regulatory agency.
Identifiants
pubmed: 35335000
pii: vaccines10030368
doi: 10.3390/vaccines10030368
pmc: PMC8954083
pii:
doi:
Types de publication
Journal Article
Review
Langues
eng
Subventions
Organisme : World Health Organization
ID : 001
Pays : International
Références
N Engl J Med. 2017 Oct 12;377(15):1438-1447
pubmed: 29020589
Trends Microbiol. 2014 Jun;22(6):317-25
pubmed: 24684968
JAMA. 2017 Mar 14;317(10):1075-1077
pubmed: 28291882
Nat Med. 2014 Oct;20(10):1126-9
pubmed: 25194571
N Engl J Med. 2017 Mar 9;376(10):928-938
pubmed: 25426834
Lancet Infect Dis. 2016 Jan;16(1):31-42
pubmed: 26546548
Vaccines (Basel). 2021 Feb 25;9(3):
pubmed: 33668698
Curr Opin Virol. 2012 Jun;2(3):353-6
pubmed: 22709520
Arch Virol Suppl. 1999;15:159-69
pubmed: 10470276
Sci Transl Med. 2012 Sep 12;4(151):151ra126
pubmed: 22972844
Lancet. 2021 Jan 30;397(10272):355-357
pubmed: 33453149
J Infect Public Health. 2020 Jul;13(7):956-962
pubmed: 32475805
Expert Rev Vaccines. 2016 Dec;15(12):1467-1479
pubmed: 27792416
Front Immunol. 2018 Aug 10;9:1803
pubmed: 30147687
JAMA. 2016 Apr 19;315(15):1610-23
pubmed: 27092831
Hum Vaccin Immunother. 2017 Mar 4;13(3):613-620
pubmed: 28152326
Vaccine. 2016 Dec 12;34(51):6512-6517
pubmed: 27558619
Int J Infect Dis. 2020 Jun;95:167-173
pubmed: 32247051
Clin Vaccine Immunol. 2013 Jul;20(7):1016-26
pubmed: 23658392
Vaccine. 2014 Apr 17;32(19):2217-24
pubmed: 24613523
NPJ Vaccines. 2020 Dec 17;5(1):112
pubmed: 33335092
Arch Virol. 2013 Jun;158(6):1425-32
pubmed: 23358612
Lancet. 2017 Feb 11;389(10069):621-628
pubmed: 28017399