Analysis of Conformational Preferences in Caffeine.


Journal

Molecules (Basel, Switzerland)
ISSN: 1420-3049
Titre abrégé: Molecules
Pays: Switzerland
ID NLM: 100964009

Informations de publication

Date de publication:
17 Mar 2022
Historique:
received: 29 10 2021
revised: 13 12 2021
accepted: 13 12 2021
entrez: 26 3 2022
pubmed: 27 3 2022
medline: 31 3 2022
Statut: epublish

Résumé

High level DLPNO−CCSD(T) electronic structure calculations with extended basis sets over B3LYP−D3 optimized geometries indicate that the three methyl groups in caffeine overcome steric hindrance to adopt uncommon conformations, each one placing a C−H bond on the same plane of the aromatic system, leading to the C−H bonds eclipsing one carbonyl group, one heavily delocalized C−N bond constituent of the fused double ring aromatic system, and one C−H bond from the imidazole ring. Deletion of indiscriminate and selective non-Lewis orbitals unequivocally show that hyperconjugation in the form of a bidirectional −CH3 ⇆ aromatic system charge transfer is responsible for these puzzling conformations. The structural preferences in caffeine are exclusively determined by orbital interactions, ruling out electrostatics, induction, bond critical points, and density redistribution because the steric effect, the allylic effect, the Quantum Theory of Atoms in Molecules (QTAIM), and the non-covalent interactions (NCI), all predict wrong energetic orderings. Tiny rotational barriers, not exceeding 1.3 kcal/mol suggest that at room conditions, each methyl group either acts as a free rotor or adopts fluxional behavior, thus preventing accurate determination of their conformations. In this context, our results supersede current experimental ambiguity in the assignation of methyl conformation in caffeine and, more generally, in methylated xanthines and their derivatives.

Identifiants

pubmed: 35335301
pii: molecules27061937
doi: 10.3390/molecules27061937
pmc: PMC8949453
pii:
doi:

Substances chimiques

Caffeine 3G6A5W338E

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : University of Antioquia
ID : Estrategia para la sostenibilidad. Internal project 2019-25332

Références

J Phys Chem A. 2021 Feb 25;125(7):1553-1563
pubmed: 33560853
Pharmacol Rep. 2008 Nov-Dec;60(6):789-97
pubmed: 19211970
Nature. 2001 May 31;411(6837):539-41
pubmed: 11385553
J Chem Theory Comput. 2011 Mar 8;7(3):625-632
pubmed: 21516178
Spectrochim Acta A Mol Biomol Spectrosc. 2013 Nov;115:45-50
pubmed: 23831977
Chembiochem. 2021 Feb 15;22(4):724-732
pubmed: 32986926
Chem Soc Rev. 2021 Sep 20;50(18):10212-10252
pubmed: 34542133
J Mol Model. 2018 Nov 3;24(12):331
pubmed: 30392139
Phys Chem Chem Phys. 2015 Dec 21;17(47):31917-30
pubmed: 26568481
Angew Chem Int Ed Engl. 2014 Oct 13;53(42):11214-7
pubmed: 25196556
Molecules. 2020 Sep 04;25(18):
pubmed: 32899858
Chem Sci. 2021 Jun 15;12(26):9233-9245
pubmed: 34276953
Phys Chem Chem Phys. 2021 Jul 14;23(27):14857-14872
pubmed: 34223573
Biomed Chromatogr. 2007 Feb;21(2):190-200
pubmed: 17221922
J Phys Chem A. 2020 Nov 12;124(45):9413-9426
pubmed: 33135896
J Chem Phys. 2017 Jul 28;147(4):044312
pubmed: 28764334
Chemphyschem. 2021 Dec 3;22(23):2401-2412
pubmed: 34554628
J Org Chem. 2019 Nov 15;84(22):14644-14658
pubmed: 31625741
Molecules. 2020 Jan 10;25(2):
pubmed: 31936766
J Chem Phys. 2007 Dec 7;127(21):214509
pubmed: 18067366
Clin Pharmacol Ther. 1995 Dec;58(6):684-91
pubmed: 8529334
Molecules. 2021 Mar 11;26(6):
pubmed: 33799657
Phys Chem Chem Phys. 2020 Jun 17;22(23):13049-13061
pubmed: 32478372
Phys Chem Chem Phys. 2018 Feb 14;20(7):5036-5045
pubmed: 29388644
J Chem Theory Comput. 2015 Apr 14;11(4):1525-39
pubmed: 26889511
Chembiochem. 2021 Sep 16;:
pubmed: 34529328
J Phys Chem B. 2021 Sep 16;125(36):10383-10391
pubmed: 34492187
Pharmacogenet Genomics. 2012 May;22(5):389-95
pubmed: 22293536
J Chem Phys. 2013 Oct 7;139(13):134101
pubmed: 24116546
J Phys Chem A. 2019 Oct 10;123(40):8650-8656
pubmed: 31532674
Phys Chem Chem Phys. 2019 Feb 13;21(7):3752-3760
pubmed: 30702098
Phys Chem Chem Phys. 2020 Mar 14;22(10):5929-5941
pubmed: 32115599
J Phys Chem A. 2019 Sep 5;123(35):7609-7618
pubmed: 31408353
J Med Chem. 2021 Jun 10;64(11):7156-7178
pubmed: 34019396
J Phys Chem B. 2020 Jan 9;124(1):79-90
pubmed: 31790579
J Am Chem Soc. 2010 May 12;132(18):6498-506
pubmed: 20394428
J Mol Model. 2019 Jan 4;25(1):20
pubmed: 30610383
Nutr Rev. 2014 Oct;72 Suppl 1:23-33
pubmed: 25293541
Phys Chem Chem Phys. 2018 Aug 8;20(31):20382-20390
pubmed: 30043008
Phys Chem Chem Phys. 2018 Mar 28;20(13):8909-8916
pubmed: 29557483
Phys Chem Chem Phys. 2017 Aug 23;19(33):22375-22384
pubmed: 28805861
J Comput Chem. 2012 Nov 15;33(30):2440-9
pubmed: 22837020
J Food Sci. 2010 Apr;75(3):R77-87
pubmed: 20492310
J Chem Phys. 2013 Jan 21;138(3):034106
pubmed: 23343267
Nature. 2001 May 31;411(6837):565-8
pubmed: 11385566
Chemphyschem. 2016 Jul 4;17(13):2022-34
pubmed: 26990819
J Mol Model. 2020 Apr 4;26(5):92
pubmed: 32246205
Phys Chem Chem Phys. 2008 May 21;10(19):2819-26
pubmed: 18464999

Auteurs

Sara Gómez (S)

Classe di Scienze, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy.

Natalia Rojas-Valencia (N)

Instituto de Química, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellin 050010, Colombia.

Albeiro Restrepo (A)

Instituto de Química, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellin 050010, Colombia.

Articles similaires

Comparative assessment of physics-based in silico methods to calculate relative solubilities.

Adiran Garaizar Suarez, Andreas H Göller, Michael E Beck et al.
1.00
Solvents Solubility Quantum Theory Molecular Dynamics Simulation Thermodynamics
Humans Brain Neuroimaging Quantum Theory Neurosciences
Humans Female Male Adaptation, Psychological Universities

Classifications MeSH