Biodegradable, Stretchable and Transparent Plastic Films from Modified Waterborne Polyurethane Dispersions.

biodegradable plastic polymer hybrids polyvinylpyrrolidone (PVP) transparent polymer waterborne polyurethane

Journal

Polymers
ISSN: 2073-4360
Titre abrégé: Polymers (Basel)
Pays: Switzerland
ID NLM: 101545357

Informations de publication

Date de publication:
16 Mar 2022
Historique:
received: 24 02 2022
revised: 10 03 2022
accepted: 15 03 2022
entrez: 26 3 2022
pubmed: 27 3 2022
medline: 27 3 2022
Statut: epublish

Résumé

Waterborne polyurethane dispersions can be designed to generate highly functional and environmentally friendly polymer systems. The use of water as the main dispersion medium is very advantageous for the environment and the introduction of linear and aliphatic polyols such as polyether and polyesters in the formulations can make them highly biocompatible and susceptible to biodegradation. In this study, we fabricated biodegradable, flexible and transparent plastic films by hybridizing a waterborne aliphatic polyester polyurethane (PU) suspension with polyvinylpyrrolidone (PVP) using mechanical homogenization in water. Films were cast containing different concentrations of PVP. The hybrids containing 50 wt.% PVP (PU/PVP_50/50) were hydrophobic, stretchable, highly transparent and ductile beyond 100% strain compared to highly brittle PVP. The mechanical properties of the PU/PVP_50/50 film remained stable after repeated immersion wet-dry cycles, each lasting 2 days, and the dried films recovered their mechanical properties after each cycle. Based on a 28-day biochemical oxygen demand (BOD) test, the hybrid PU/PVP_50/50 film underwent extensive biodegradation. This simple but effective process can be very suitable in producing biodegradable ductile films with very good transparency that can serve a number of applications such as agricultural mulches, food and pharmaceutical packaging and biomedical field.

Identifiants

pubmed: 35335530
pii: polym14061199
doi: 10.3390/polym14061199
pmc: PMC8948952
pii:
doi:

Types de publication

Journal Article

Langues

eng

Références

J Biomater Sci Polym Ed. 1998;9(3):271-95
pubmed: 9556762
Polymers (Basel). 2020 Sep 03;12(9):
pubmed: 32899256
Polymers (Basel). 2021 Dec 07;13(24):
pubmed: 34960833
J Mater Chem B. 2015 Dec 21;3(47):9089-9097
pubmed: 32263122
ACS Appl Mater Interfaces. 2013 Jun 26;5(12):5717-26
pubmed: 23713478
Polymers (Basel). 2019 Jun 20;11(6):
pubmed: 31226802
J Biomed Mater Res. 2002 Sep 5;61(3):493-503
pubmed: 12115475
J Biomed Mater Res B Appl Biomater. 2008 May;85(2):326-33
pubmed: 17973247
Polymers (Basel). 2021 Nov 19;13(22):
pubmed: 34833302
Molecules. 2021 Feb 11;26(4):
pubmed: 33670378
Polymers (Basel). 2017 Feb 16;9(2):
pubmed: 30970745
Polymers (Basel). 2020 Nov 30;12(12):
pubmed: 33266183
Biofabrication. 2020 May 12;12(3):035015
pubmed: 32150742
ACS Appl Mater Interfaces. 2018 Oct 10;10(40):34573-34584
pubmed: 30199218
Sci Rep. 2020 Jun 24;10(1):10285
pubmed: 32581288
Comput Struct Biotechnol J. 2018 Dec 31;17:110-117
pubmed: 30728918

Auteurs

Uttam C Paul (UC)

Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.

Gözde Bayer (G)

DS Bio ve Nanoteknoloji A. Ş., Lavida City Plaza 45/7, Ankara 06530, Turkey.

Silvia Grasselli (S)

GEA Mechanical Equipment Italia S.p.A., Via da Erba Edoari Mario, 29, 43123 Parma, Italy.

Annalisa Malchiodi (A)

GEA Mechanical Equipment Italia S.p.A., Via da Erba Edoari Mario, 29, 43123 Parma, Italy.

Ilker S Bayer (IS)

Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.

Classifications MeSH