Activation of LH GABAergic inputs counteracts fasting-induced changes in tVTA/RMTG neurons.
GABA
RMTg
dopamine
fasting
inhibitory synaptic transmission
motivational state
tVTA
ventral tegmental area
Journal
The Journal of physiology
ISSN: 1469-7793
Titre abrégé: J Physiol
Pays: England
ID NLM: 0266262
Informations de publication
Date de publication:
05 2022
05 2022
Historique:
received:
24
11
2021
accepted:
04
03
2022
pubmed:
27
3
2022
medline:
3
5
2022
entrez:
26
3
2022
Statut:
ppublish
Résumé
Dopamine neurons in the ventral tegmental area (VTA) are strongly innervated by GABAergic neurons in the 'tail of the VTA' (tVTA), also known as the rostralmedial tegmental nucleus (RMTg). Disinhibition of dopamine neurons through firing of the GABAergic neurons projecting from the lateral hypothalamus (LH) leads to reward seeking and consumption through dopamine release in the nucleus accumbens. VTA dopamine neurons respond to changes in motivational state, yet less is known about whether tVTA/RMTg GABAergic neurons or the LH GABAergic neurons that project to them are also affected by changes in motivational state, such as fasting. An acute 16 h overnight fast decreased the excitability of tVTA/RMTg GABAergic neurons of male and female mice. In addition, fasting decreased synaptic strength at LH GABA to tVTA/RMTg GABAergic synapses, indicated by reduced amplitude of optically evoked currents, decreased readily releasable pool (RRP) size and replenishment. Optical stimulation of LH GABA terminals suppressed evoked action potentials of tVTA/RMTg GABAergic neurons in unfasted mice, but this effect decreased following fasting. Furthermore, during fasting, LH GABA inputs to tVTA/RMTg neurons maintained functional connectivity during depolarization, as depolarization block was reduced following fasting. Taken together, inhibitory synaptic transmission from LH GABA inputs onto tVTA/RMTg GABAergic neurons decreases following fasting; however, ability to functionally inhibit tVTA/RMTg GABAergic neurons is preserved, allowing for possible disinhibition of dopamine neurons and subsequent foraging. KEY POINTS: While dopamine neuronal activity changes with motivational state, it is unknown if fasting influences tVTA/RMTg GABAergic neurons, a major inhibitory input to ventral tegmental area (VTA) dopamine neurons. In unfasted mice, there were sex differences in inhibitory synaptic transmission onto tVTA/RMTg GABAergic neurons. Activation of lateral hypothalamus (LH) GABAergic neurons decreases firing of tVTA/RMTg GABAergic neurons through a monosynaptic input. An acute fast decreases the excitability of tVTA/RMTg GABAergic neurons. An acute fast decreases inhibitory synaptic transmission of the LH GABA input to tVTA/RMTg GABAergic neurons in both male and female mice.
Substances chimiques
gamma-Aminobutyric Acid
56-12-2
Dopamine
VTD58H1Z2X
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2203-2224Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2022 The Authors. The Journal of Physiology © 2022 The Physiological Society.
Références
Balcita-Pedicino, J. J., Omelchenko, N., Bell, R., & Sesack, S. R. (2011). The inhibitory influence of the lateral habenula on midbrain dopamine cells: Ultrastructural evidence for indirect mediation via the rostromedial mesopontine tegmental nucleus. Journal of Comparative Neurology, 519, 1143-1164.
Barbano, M. F., Wang, H. L., Morales, M., & Wise, R. A. (2016). Feeding and reward are differentially induced by activating GABAergic lateral hypothalamic projections to VTA. Journal of Neuroscience, 36, 2975-2985.
Barrot, M., Sesack, S. R., Georges, F., Pistis, M., Hong, S., & Jhou, T. C. (2012). Braking dopamine systems: A new GABA master structure for mesolimbic and nigrostriatal functions. Journal of Neuroscience, 32, 14094-14101.
Bekkers, J. M., & Clements, J. D. (1999). Quantal amplitude and quantal variance of strontium-induced asynchronous EPSCs in rat dentate granule neurons. Journal of Physiology, 516, 227-248.
Belelli, D., Harrison, N. L., Maguire, J., Macdonald, R. L., Walker, M. C., & Cope, D. W. (2009). Extrasynaptic GABAa receptors: Form, pharmacology, and function. Journal of Neuroscience, 29, 12757-12763.
Berridge, K. C. (2009). “Liking” and “wanting” food rewards: Brain substrates and roles in eating disorders. Physiology & Behavior, 97, 537-550.
Betley, J. N., Xu, S., Cao, Z. F. H., Gong, R., Magnus, C. J., Yu, Y., & Sternson, S. M. (2015). Neurons for hunger and thirst transmit a negative-valence teaching signal. Nature, 521, 180-185.
Bourdy, R., & Barrot, M. (2012). A new control center for dopaminergic systems: Pulling the VTA by the tail. Trends in Neuroscience (Tins), 35, 681-690.
Brown, M. T. C., Tan, K. R., O'Connor, E. C., Nikonenko, I., Muller, D., & Lüscher, C. (2012). Ventral tegmental area GABA projections pause accumbal cholinergic interneurons to enhance associative learning. Nature, 492, 452-456.
Brown, P. L., Palacorolla, H., Brady, D., Riegger, K., Elmer, G. I., & Shepard, P. D. (2017). Habenula-induced inhibition of midbrain dopamine neurons is diminished by lesions of the rostromedial tegmental nucleus. Journal of Neuroscience, 37, 217-225.
Burnett, C. J., Li, C., Webber, E., Tsaousidou, E., Xue, S. Y., Brüning, J. C., & Krashes, M. J. (2016). Hunger-driven motivational state competition. Neuron, 92, 187-201.
Chieng, B., Azriel, Y., Mohammadi, S., & Christie, M. J. (2011). Distinct cellular properties of identified dopaminergic and GABAergic neurons in the mouse ventral tegmental area. Journal of Physiology, 589, 3775-3787.
Cone, J. J., Fortin, S. M., McHenry, J. A., Stuber, G. D., McCutcheon, J. E., & Roitman, M. F. (2016). Physiological state gates acquisition and expression of mesolimbic reward prediction signals. Proceedings of the National Academy of Sciences of the U S A, 113, 1943-1948.
de Git, K. C. G., Hazelhoff, E. M., Nota, M. H. C., Schele, E., Luijendijk, M. C. M., Dickson, S. L., van der Plasse, G., & Adan, R. A. H. (2021). Zona incerta neurons projecting to the ventral tegmental area promote action initiation towards feeding. Journal of Physiology, 599, 709-724.
Farrant, M., & Nusser, Z. (2005). Variations on an inhibitory theme: Phasic and tonic activation of GABA A receptors. Nature Reviews Neuroscience, 6, 215-229.
Fortin, S. M., & Roitman, M. F. (2018). Challenges to body fluid homeostasis differentially recruit phasic dopamine signaling in a taste-selective manner. Journal of Neuroscience, 38, 6841-6853.
Geddes, S. D., Assadzada, S., Lemelin, D., Sokolovski, A., Bergeron, R., Haj-Dahmane, S., & Béïque, J. C. (2016). Target-specific modulation of the descending prefrontal cortex inputs to the dorsal raphe nucleus by cannabinoids. Proceedings of the National Academy of Sciences of the U S A, 113, 5429-5434.
Godfrey, N., & Borgland, S. L. (2020). Sex differences in the effect of acute fasting on excitatory and inhibitory synapses onto ventral tegmental area dopamine neurons. Journal of Physiology, 598, 5523-5539.
Grundy, D. (2015). Principles and standards for reporting animal experiments in The Journal of Physiology and Experimental Physiology. Journal of Physiology, 593, 2547-2549.
Jacob, T. C., Moss, S. J., & Jurd, R. (2008). GABAA receptor trafficking and its role in the dynamic modulation of neuronal inhibition. Nature Reviews Neuroscience, 9, 331-343.
Jennings, J. H., Ung, R. L., Resendez, S. L., Stamatakis, A. M., Taylor, J. G., Huang, J., Veleta, K., Kantak, P. A., Aita, M., Shilling-Scrivo, K., Ramakrishnan, C., Deisseroth, K., Otte, S., & Stuber, G. D. (2015). Visualizing hypothalamic network dynamics for appetitive and consummatory behaviors. Cell, 160, 516-27.
Jhou, T. C., Fields, H. L., Baxter, M. G., Saper, C. B., & Holland, P. C. (2009). The rostromedial tegmental nucleus (RMTg), a GABAergic afferent to midbrain dopamine neurons, encodes aversive stimuli and inhibits motor responses. Neuron, 61, 786-800.
Kanold, P. O., & Manis, P. B. (1999). Transient potassium currents regulate the discharge patterns of dorsal cochlear nucleus pyramidal cells. Journal of Neuroscience, 19, 2195-2208.
Kanold, P. O., & Manis, P. B. (2005). Encoding the timing of inhibitory inputs. Journal of Neurophysiology, 93, 2887-2897.
Kaufling, J., Veinante, P., Pawlowski, S. A., Freund-Mercier, M. J., & Barrot, M. (2009). Afferents to the GABAergic tail of the ventral tegmental area in the rat. Journal of Comparative Neurology, 513, 597-621.
Li, H., Pullmann, D., Cho, J. Y., Eid, M., & Jhou, T. C. (2019). Generality and opponency of rostromedial tegmental (RMTg) roles in valence processing. Elife, 8, 1-19.
Li, H., Pullmann, D., & Jhou, T. C. (2019). Valence-encoding in the lateral habenula arises from the entopeduncular region. Elife, 8, 1-17.
Li, H., Vento, P. J., Parrilla-Carrero, J., Pullmann, D., Chao, Y. S., Eid, M., & Jhou, T. C. (2019). Three rostromedial tegmental afferents drive triply dissociable aspects of punishment learning and aversive valence encoding. Neuron, 104, 987-999.e4.
Lunde, A., & Glover, J. C. (2020). A versatile toolbox for semi-automatic cell-by-cell object-based colocalization analysis. Science Reports, 10, 1-26.
MacAskill, A. F., Cassel, J. M., & Carter, A. G. (2014). Cocaine exposure reorganizes cell type- and input-specific connectivity in the nucleus accumbens. Nature Neuroscience, 17, 1198-1207.
Maguire, J. L., Stell, B. M., Rafizadeh, M., & Mody, I. (2005). Ovarian cycle-linked changes in GABAA receptors mediating tonic inhibition alter seizure susceptibility and anxiety. Nature Neuroscience, 8, 797-804.
Margolis, E. B., Lock, H., Hjelmstad, G. O., & Fields, H. L. (2006). The ventral tegmental area revisited: Is there an electrophysiological marker for dopaminergic neurons? Journal of Physiology, 577, 907-924.
Margolis, E. B., Toy, B., Himmels, P., Morales, M., & Fields, H. L. (2012). Identification of rat ventral tegmental area GABAergic neurons. Plos One, 7, e42365.
Marino, R. A. M., McDevitt, R. A., Gantz, S. C., Shen, H., Pignatelli, M., Xin, W., Wise, R. A., & Bonci, A. (2020). Control of food approach and eating by a GABAergic projection from lateral hypothalamus to dorsal pons. Proceedings of the National Academy of Sciences of the U S A, 117, 8611-8615.
Mazzone, C. M., Liang-Guallpa, J., Li, C., Wolcott, N. S., Boone, M. H., Southern, M., Kobzar, N. P., Salgado, I. D. A., Reddy, D. M., Sun, F., Zhang, Y., Li, Y., Cui, G., & Krashes, M. J. (2020). High-fat food biases hypothalamic and mesolimbic expression of consummatory drives. Nature Neuroscience, 23, 1253-1266.
McGarry, L. M., & Carter, A. G. (2016). Inhibitory gating of basolateral Amygdala inputs to the prefrontal cortex. Journal of Neuroscience, 36, 9391-9406.
McGarry, L. M., & Carter, A. G. (2017). Prefrontal cortex drives distinct projection neurons in the basolateral amygdala. Cell reports, 21, 1426-1433.
Melis, M., De Felice, M., Lecca, S., Fattore, L., & Pistis, M. (2013). Sex-specific tonic 2-arachidonoylglycerol signaling at inhibitory inputs onto dopamine neurons of Lister hooded rats. Frontiers in Integrative Neuroscience, 7, 1-13.
Melón, L. C., Nolan, Z. T., Colar, D., Moore, E. M., & Boehm, S. L. (2017). Activation of extrasynaptic δ-GABAA receptors globally or within the posterior-VTA has estrous-dependent effects on consumption of alcohol and estrous-independent effects on locomotion. Hormones and Behavior, 95, 65-75.
Nair-Roberts, R. G., Chatelain-Badie, S. D., Benson, E., White-Cooper, H., Bolam, J. P., & Ungless, M. A. (2008). Stereological estimates of dopaminergic, GABAergic and glutamatergic neurons in the ventral tegmental area, substantia nigra and retrorubral field in the rat. Neuroscience, 152, 1024-1031.
Navarro, M., Olney, J. J., Burnham, N. W., Mazzone, C. M., Lowery-Gionta, E. G., Pleil, K. E., Kash, T. L., & Thiele, T. E. (2016). Lateral hypothalamus GABAergic neurons modulate consummatory behaviors regardless of the caloric content or biological relevance of the consumed stimuli. Neuropsychopharmacology, 41, 1505-1512.
Nieh, E. H., Matthews, G. A., Allsop, S. A., Presbrey, K. N., Leppla, C. A., Wichmann, R., Neve, R., Wildes, C. P., & Tye, K. M. (2015). Decoding neural circuits that control compulsive sucrose seeking. Cell, 160, 528-541.
Nieh, E. H., Vander Weele, C. M., Matthews, G. A., Presbrey, K. N., Wichmann, R., Leppla, C. A., Izadmehr, E. M., & Tye, K. M. (2016). Inhibitory input from the lateral hypothalamus to the ventral tegmental area disinhibits dopamine neurons and promotes behavioral activation. Neuron, 90, 1286-1298.
Ogawa, S. K., Cohen, J. Y., Hwang, D., Uchida, N., & Watabe-Uchida, M. (2014). Organization of monosynaptic inputs to the serotonin and dopamine neuromodulatory systems. Cell reports, 8, 1105-1118.
Padamsey, Z., Katsanevaki, D., Dupuy, N., & Rochefort, N. L. (2021). Neocortex saves energy by reducing coding precision during food scarcity. Neuron, 1-17.
Prior, H., Ewart, L., Bright, J., & Valentin, J. P. (2012). Refinement of the charcoal meal study by reduction of the fasting period. ATLA Alternatives to Laboratory Animals, 40, 99-107.
Root, D. H., Mejias-Aponte, C., Zhang, S., Wang, H., Hoffman, A. F., Lupica, C. R., & Morales, M. (2014). Single rodent mesohabenular axons release glutamate and GABA. Nature Neuroscience, 17, 1543-1551.
Roseberry, A. G. (2015). Acute fasting increases somatodendritic dopamine release in the ventral Tegmental area. Journal of Neurophysiology, 114, 1072-1082.
Salamone, J. D., Correa, M., Mingote, S., & Weber, S. M. (2003). Nucleus accumbens dopamine and the regulation of effort in food-seeking behavior: Implications for studies of natural motivation, psychiatry, and drug abuse. Journal of Pharmacology and Experimental Therapeutics, 305, 1-8.
Sánchez-Catalán, M. J., Faivre, F., Yalcin, I., Muller, M. A., Massotte, D., Majchrzak, M., & Barrot, M. (2017). Response of the tail of the ventral tegmental area to aversive stimuli. Neuropsychopharmacology, 42, 638-648.
Semyanov, A., Walker, M. C., Kullmann, D. M., & Silver, R. A. (2004). Tonically active GABAA receptors: Modulating gain and maintaining the tone. Trends in Neuroscience (Tins), 27, 262-269.
Sharpe, M. J., Marchant, N. J., Whitaker, L. R., Richie, C. T., Zhang, Y. J., Campbell, E. J., Koivula, P. P., Necarsulmer, J. C., Mejias-Aponte, C., Morales, M., Pickel, J., Smith, J. C., Niv, Y., Shaham, Y., Harvey, B. K., & Schoenbaum, G. (2017). Lateral hypothalamic GABAergic neurons encode reward predictions that are relayed to the ventral tegmental area to regulate learning. Current Biology, 27, 2089-2100.e5.
Stell, B. M., Brickley, S. G., Tang, C. Y., Farrant, M., & Mody, I. (2003). Neuroactive steroids reduce neuronal excitability by selectively enhancing tonic inhibition mediated by δ subunit-containing GABAA receptors. Proceedings of the National Academy of Sciences of the U S A, 100, 14439-14444.
Stuber, G. D., & Wise, R. A. (2016). Lateral hypothalamic circuits for feeding and reward. Nature Neuroscience, 19, 198-205.
Taylor, S., Badurek, S., DiLeone, R., Nashmi, R., Minichiello, L., & Picciotto, M. (2014). GABAergic and glutamatergic efferents of the mouse ventral tegmental area. Journal of Comparative Neurology, 522, 3308-3334.
Thanawala, M. S., & Regehr, W. G. (2013). Presynaptic calcium influx controls neurotransmitter release in part by regulating the effective size of the readily releasable pool. Journal of Neuroscience, 33, 4625-4633.
Thanawala, M. S., & Regehr, W. G. (2016). Determining synaptic parameters using high-frequency activation. Journal of Neuroscience Methods, 264, 136-152.
Ungless, M. A., & Grace, A. A. (2012). Are you or aren't you? Challenges associated with physiologically identifying dopamine neurons. Trends in Neuroscience (Tins), 35, 422-430.
Van Zessen, R., Phillips, J. L., Budygin, E. A., & Stuber, G. D. (2012). Activation of VTA GABA neurons disrupts reward consumption. Neuron, 73, 1184-1194.
Wise, R. A. (2006). Role of brain dopamine in food reward and reinforcement. Philosophical Transactions of the Royal Society B Biological Science, 361, 1149-1158.