Interpretation of 2-[


Journal

European radiology
ISSN: 1432-1084
Titre abrégé: Eur Radiol
Pays: Germany
ID NLM: 9114774

Informations de publication

Date de publication:
Sep 2022
Historique:
received: 28 10 2021
accepted: 17 02 2022
revised: 14 02 2022
pubmed: 29 3 2022
medline: 19 8 2022
entrez: 28 3 2022
Statut: ppublish

Résumé

The development of immunotherapy has revolutionized cancer treatment, improving the outcome and survival of many patients. Immune checkpoint inhibitors (ICIs), the most common form of immunotherapy, use antibodies to restore T-cells' anti-tumor activity. Immune checkpoint inhibitors are gaining ground in the therapeutic strategy across various cancers. Although widely used in solid tumors, ICIs have shown remarkable efficacy in patients with Hodgkin lymphoma. 2-[

Identifiants

pubmed: 35344061
doi: 10.1007/s00330-022-08669-8
pii: 10.1007/s00330-022-08669-8
doi:

Substances chimiques

Immune Checkpoint Inhibitors 0
Fluorodeoxyglucose F18 0Z5B2CJX4D

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

6536-6544

Informations de copyright

© 2022. The Author(s), under exclusive licence to European Society of Radiology.

Références

Chen R, Zinzani PL, Lee HJ et al (2019) Pembrolizumab in relapsed or refractory Hodgkin lymphoma: two-year follow-up of KEYNOTE-087. Blood. 2019000324. https://doi.org/10.1182/blood.2019000324
Armand P, Engert A, Younes A et al (2018) Nivolumab for relapsed/refractory classic Hodgkin lymphoma after failure of autologous hematopoietic cell transplantation: extended follow-up of the multicohort single-arm phase II CheckMate 205 Trial. J Clin Oncol 36:1428–1439. https://doi.org/10.1200/JCO.2017.76.0793
doi: 10.1200/JCO.2017.76.0793 pubmed: 29584546 pmcid: 6075855
Manson G, Mear J, Herbaux C et al (2019) Long-term efficacy of anti-PD1 therapy in Hodgkin lymphoma with and without allogenic stem cell transplantation. Eur J Cancer 115:47–56. https://doi.org/10.1016/j.ejca.2019.04.006
doi: 10.1016/j.ejca.2019.04.006 pubmed: 31082693
Beköz H, Karadurmuş N, Paydaş S et al (2017) Nivolumab for relapsed or refractory Hodgkin lymphoma: real-life experience. Ann Oncol 28:2496–2502. https://doi.org/10.1093/annonc/mdx341
doi: 10.1093/annonc/mdx341 pubmed: 28961828
Manson G, Brice P, Herbaux C et al (2020) Risk of relapse after anti-PD1 discontinuation in patients with Hodgkin lymphoma. Eur J Nucl Med Mol Imaging. https://doi.org/10.1007/s00259-020-05015-2
Küppers R (2009) The biology of Hodgkin’s lymphoma. Nat Rev Cancer 9:15–27. https://doi.org/10.1038/nrc2542
doi: 10.1038/nrc2542 pubmed: 19078975
Heiden MGV, Cantley LC, Thompson CB (2009) Understanding the warburg effect: the metabolic requirements of cell proliferation. Science (80-) 324:1029–1033
doi: 10.1126/science.1160809
Weiler-Sagie M, Bushelev O, Epelbaum R et al (2010) 18F-FDG avidity in lymphoma readdressed: a study of 766 patients. J Nucl Med 51:25–30. https://doi.org/10.2967/jnumed.109.067892
doi: 10.2967/jnumed.109.067892 pubmed: 20009002
Kumar A, Burger IA, Zhang Z et al (2016) Definition of bulky disease in early stage Hodgkin lymphoma in computed tomography era: Prognostic significance of measurements in the coronal and transverse planes. Haematologica 101:1237–1243. https://doi.org/10.3324/haematol.2016.141846
doi: 10.3324/haematol.2016.141846 pubmed: 27390360 pmcid: 5046653
El-Galaly TC, D’Amore F, Mylam KJ et al (2012) Routine bone marrow biopsy has little or no therapeutic consequence for positron emission tomography/computed tomography-staged treatment-naive patients with Hodgkin lymphoma. J Clin Oncol 30:4508–4514. https://doi.org/10.1200/JCO.2012.42.4036
doi: 10.1200/JCO.2012.42.4036 pubmed: 23150698
Jerusalem G, Beguin Y, Fassotte M et al (2001) Whole-body positron emission tomography using 18F-fluorodeoxyglucose compared to standard procedures for staging patients with Hodgkin’s disease. Haematologica 86:266–273
pubmed: 11255273
Cheson BD, Fisher RI, Barrington SF et al (2014) Recommendations for initial evaluation, staging, and response assessment of hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol 32:3059–3067
doi: 10.1200/JCO.2013.54.8800
Brice P, de Kerviler E, Friedberg JW (2021) Classical Hodgkin lymphoma. Lancet:6736. https://doi.org/10.1016/S0140-6736(20)32207-8
Cheson BD, Pfistner B, Juweid ME et al (2007) Revised response criteria for malignant lymphoma. J Clin Oncol 25:579–586
doi: 10.1200/JCO.2006.09.2403
Mokrane F-Z, Chen A, Schwartz LH et al (2020) Performance of CT compared with 18 F-FDG PET in predicting the efficacy of nivolumab in relapsed or refractory Hodgkin lymphoma. Radiology 18:192056. https://doi.org/10.1148/radiol.2020192056
doi: 10.1148/radiol.2020192056
Castello A, Grizzi F, Qehajaj D, Rahal D, Lutman F, Lopci E (2019) 18 F-FDG PET/CT for response assessment in Hodgkin lymphoma undergoing immunotherapy with checkpoint inhibitors. Leuk Lymphoma 60:367–375. https://doi.org/10.1080/10428194.2018.1488254
Ansell SM (2019) Immunotherapy in Hodgkin lymphoma: the road ahead. Trends Immunol 40:380–386. https://doi.org/10.1016/j.it.2019.03.003
doi: 10.1016/j.it.2019.03.003 pubmed: 30948348
Ramchandren R, Domingo-Domènech E, Rueda A et al (2019) Nivolumab for newly diagnosed advanced-stage classic Hodgkin lymphoma: safety and efficacy in the phase II CheckMate 205 Study. J Clin Oncol.19.00315. https://doi.org/10.1200/JCO.19.00315
Manson G, Herbaux C, Brice P et al (2018) Prolonged remissions after anti-PD-1 discontinuation in patients with Hodgkin lymphoma. Blood 131:2856–2859. https://doi.org/10.1182/blood-2018-03-841262
doi: 10.1182/blood-2018-03-841262 pubmed: 29724901
Chen A, Mokrane F-Z, Schwartz LH et al (2020) Early 18 F-FDG PET/CT response predicts survival in relapsed or refractory Hodgkin lymphoma treated with nivolumab. J Nucl Med 61:649–654. https://doi.org/10.2967/jnumed.119.232827
doi: 10.2967/jnumed.119.232827 pubmed: 31628220
Dercle L, Seban R-D, Lazarovici J et al (2018) 18 F-FDG PET and CT scans detect new imaging patterns of response and progression in patients with Hodgkin lymphoma treated by anti–programmed death 1 immune checkpoint inhibitor. J Nucl Med 59:15–24. https://doi.org/10.2967/jnumed.117.193011
doi: 10.2967/jnumed.117.193011 pubmed: 28596157
Di Giacomo AM, Danielli R, Guidoboni M et al (2009) Therapeutic efficacy of ipilimumab, an anti-CTLA-4 monoclonal antibody, in patients with metastatic melanoma unresponsive to prior systemic treatments: clinical and immunological evidence from three patient cases. Cancer Immunol Immunother 58:1297–1306. https://doi.org/10.1007/s00262-008-0642-y
doi: 10.1007/s00262-008-0642-y pubmed: 19139884
Chiou VL, Burotto M (2015) Pseudoprogression and immune-related response in solid tumors. J Clin Oncol 33:3541–3543
doi: 10.1200/JCO.2015.61.6870
Park HJ, Kim KW, Pyo J et al (2020) Incidence of pseudoprogression during immune checkpoint inhibitor therapy for solid tumors: a systematic review and meta-analysis. Radiology 297:87–96. https://doi.org/10.1148/radiol.2020200443
doi: 10.1148/radiol.2020200443 pubmed: 32749204
Meignan M, Gallamini A, Meignan M, Gallamini A, Haioun C (2009) Report on the First International Workshop on interim-PET scan in lymphoma. Leuk Lymphoma 50:1257–1260. https://doi.org/10.1080/10428190903040048
Cheson BD, Ansell S, Schwartz L et al (2016) Refinement of the Lugano classification lymphoma response criteria in the era of immunomodulatory therapy. Blood 128:2489–2496. https://doi.org/10.1182/blood-2016-05-718528
doi: 10.1182/blood-2016-05-718528 pubmed: 27574190
Merryman RW, Carreau NA, Advani RH et al (2020) Impact of treatment beyond progression with immune checkpoint blockade in Hodgkin lymphoma. Oncologist 25. https://doi.org/10.1634/theoncologist.2020-0040
Grecea M, Marabelle A, Ammari S, Massard C, Champiat S (2020) Managing hyperprogressive disease in the era of programmed cell death protein 1/programmed death-ligand 1 blockade: a case discussion and review of the literature. Oncologist 25:369–374. https://doi.org/10.1634/theoncologist.2019-0671
Champiat S, Ferrara R, Massard C et al (2018) Hyperprogressive disease: recognizing a novel pattern to improve patient management. Nat Rev Clin Oncol 15:748–762
doi: 10.1038/s41571-018-0111-2
Ferrara R, Mezquita L, Texier M et al (2018) Hyperprogressive disease in patients with advanced non–small cell lung cancer treated with PD-1/PD-L1 inhibitors or with single-agent chemotherapy. JAMA Oncol 4:1543. https://doi.org/10.1001/jamaoncol.2018.3676
doi: 10.1001/jamaoncol.2018.3676 pubmed: 30193240 pmcid: 6248085
Wartewig T, Ruland J (2019) PD-1 tumor suppressor signaling in T cell lymphomas. Trends Immunol 40:403–414. https://doi.org/10.1016/j.it.2019.03.005
doi: 10.1016/j.it.2019.03.005 pubmed: 30979616
Wartewig T, Kurgyis Z, Keppler S et al (2017) PD-1 is a haploinsufficient suppressor of T cell lymphomagenesis. Nature 552:121–125. https://doi.org/10.1038/nature24649
doi: 10.1038/nature24649 pubmed: 29143824 pmcid: 5821214
Liput J, Guler E, Smith DA et al (2020) Clinical, imaging findings, responses, and outcomes of patients with classical Hodgkin lymphoma and non-Hodgkin lymphoma undergoing immune checkpoint inhibitor therapy: a single-institution experience. J Comput Assist Tomogr 44:619–626. https://doi.org/10.1097/RCT.0000000000001043
doi: 10.1097/RCT.0000000000001043 pubmed: 32558769
Seban R-D, Schwartz LH, Bonardel G, Dercle L (2020) Diagnosis of hyperprogressive disease in patients treated with checkpoint inhibitors using 18F-FDG PET/CT. J Nucl Med 61:1404–1405. https://doi.org/10.2967/jnumed.120.242768
doi: 10.2967/jnumed.120.242768 pubmed: 32086243
Hiniker SM, Chen DS, Knox SJ (2012) Abscopal effect in a patient with melanoma. N Engl J Med 366:2035–2036. https://doi.org/10.1056/NEJMc1203984
doi: 10.1056/NEJMc1203984 pubmed: 22621637
Wight JC, Hawkes EA, Berlangieri SU, Khor R, Grigg AP (2018) An abscopal effect may augment PD-1 inhibition in refractory classical Hodgkin lymphoma. Leuk Lymphoma 59:2749–2751. https://doi.org/10.1080/10428194.2018.1452217
Michot JM, Mazeron R, Dercle L et al (2016) Abscopal effect in a Hodgkin lymphoma patient treated by an anti-programmed death 1 antibody. Eur J Cancer 66:91–94. https://doi.org/10.1016/j.ejca.2016.06.017
doi: 10.1016/j.ejca.2016.06.017 pubmed: 27544928
Qin Q, Nan X, Miller T et al (2018) Complete local and abscopal responses from a combination of radiation and nivolumab in refractory Hodgkin’s lymphoma. Radiat Res 190:322. https://doi.org/10.1667/rr15048.1
doi: 10.1667/rr15048.1 pubmed: 29949442 pmcid: 6135239
Bernard-Tessier A, Baldini C, Castanon E et al (2020) Patterns of progression in patients treated for immuno-oncology antibodies combination. Cancer Immunol Immunother 1–12. https://doi.org/10.1007/s00262-020-02647-z
Tazdait M, Mezquita L, Lahmar J et al (2018) Patterns of responses in metastatic NSCLC during PD-1 or PDL-1 inhibitor therapy: comparison of RECIST 1.1, irRECIST and iRECIST criteria. Eur J Cancer 88:38–47. https://doi.org/10.1016/j.ejca.2017.10.017
doi: 10.1016/j.ejca.2017.10.017 pubmed: 29182990
Thompson JA, Schneider BJ, Brahmer J et al (2020) Management of immunotherapy-related toxicities, version 1.2020 featured updates to the NCCN guidelines. J Natl Compr Cancer Netw 18:231–241. https://doi.org/10.6004/jnccn.2020.0012
Mekki A, Dercle L, Lichtenstein P et al (2018) Detection of immune-related adverse events by medical imaging in patients treated with anti-programmed cell death 1. Eur J Cancer 96:91–104. https://doi.org/10.1016/j.ejca.2018.03.006
doi: 10.1016/j.ejca.2018.03.006 pubmed: 29698933
Dercle L, Mokrane F-Z, Schiano de Colella JM et al (2019) Unconventional immune-related phenomena observed using 18F-FDG PET/CT in Hodgkin lymphoma treated with anti PD-1 monoclonal antibodies. Eur J Nucl Med Mol Imaging 46:1391–1392. https://doi.org/10.1007/s00259-019-04310-x
doi: 10.1007/s00259-019-04310-x pubmed: 30888476
Ricciuti B, Genova C, De Giglio A et al (2019) Impact of immune-related adverse events on survival in patients with advanced non-small cell lung cancer treated with nivolumab: long-term outcomes from a multi-institutional analysis. J Cancer Res Clin Oncol 145:479–485. https://doi.org/10.1007/s00432-018-2805-3
doi: 10.1007/s00432-018-2805-3 pubmed: 30506406
Haratani K, Hayashi H, Chiba Y et al (2018) Association of immune-related adverse events with nivolumab efficacy in non-small cell lung cancer. JAMA Oncol 4:374–378. https://doi.org/10.1001/jamaoncol.2017.2925
doi: 10.1001/jamaoncol.2017.2925 pubmed: 28975219
Eggermont AMM, Kicinski M, Blank CU et al (2020) Association between immune-related adverse events and recurrence-free survival among patients with stage III melanoma randomized to receive pembrolizumab or placebo: a secondary analysis of a randomized clinical trial. JAMA Oncol. https://doi.org/10.1001/jamaoncol.2019.5570
Indini A, Di Guardo L, Cimminiello C et al (2019) Immune-related adverse events correlate with improved survival in patients undergoing anti-PD1 immunotherapy for metastatic melanoma. J Cancer Res Clin Oncol 145:511–521. https://doi.org/10.1007/s00432-018-2819-x
doi: 10.1007/s00432-018-2819-x pubmed: 30539281
Petrelli F, Grizzi G, Ghidini M et al (2020) Immune-related adverse events and survival in solid tumors treated with immune checkpoint inhibitors: a systematic review and meta-analysis. J Immunother 43:1–7. https://doi.org/10.1097/CJI.0000000000000300
doi: 10.1097/CJI.0000000000000300 pubmed: 31574022
Sachpekidis C, Kopp-Schneider A, Hakim-Meibodi L, Dimitrakopoulou-Strauss A, Hassel JC (2019) 18F-FDG PET/CT longitudinal studies in patients with advanced metastatic melanoma for response evaluation of combination treatment with vemurafenib and ipilimumab. Melanoma Res 29:178–186. https://doi.org/10.1097/CMR.0000000000000541
Sachpekidis C, Larribère L, Kopp-Schneider A, Hassel JC, Dimitrakopoulou-Strauss A (2019) Can benign lymphoid tissue changes in 18 F-FDG PET/CT predict response to immunotherapy in metastatic melanoma? Cancer Immunol Immunother 68:297–303. https://doi.org/10.1007/s00262-018-2279-9
Nobashi T, Baratto L, Reddy SA et al (2019) Predicting response to immunotherapy by evaluating tumors, lymphoid cell-rich organs, and immune-related adverse events using FDG-PET/CT. Clin Nucl Med 44:e272–e279. https://doi.org/10.1097/RLU.0000000000002453
doi: 10.1097/RLU.0000000000002453 pubmed: 30688730
Wong A, Callahan J, Keyaerts M et al (2020) 18F-FDG PET/CT based spleen to liver ratio associates with clinical outcome to ipilimumab in patients with metastatic melanoma. Cancer Imaging 20:36. https://doi.org/10.1186/s40644-020-00313-2
doi: 10.1186/s40644-020-00313-2 pubmed: 32408884 pmcid: 7227105
Aide N, Hicks RJ, Le Tourneau C et al (2019) FDG PET/CT for assessing tumour response to immunotherapy. Eur J Nucl Med Mol Imaging 46:238–250. https://doi.org/10.1007/s00259-018-4171-4
doi: 10.1007/s00259-018-4171-4 pubmed: 30291373
Seban R-D, Nemer JS, Marabelle A et al (2019) Prognostic and theranostic 18F-FDG PET biomarkers for anti-PD1 immunotherapy in metastatic melanoma: association with outcome and transcriptomics. Eur J Nucl Med Mol Imaging 46:2298–2310. https://doi.org/10.1007/s00259-019-04411-7
doi: 10.1007/s00259-019-04411-7 pubmed: 31346755
Seban R-D, Synn S, Muneer I et al (2021) Spleen glucose metabolism on [18F]-FDG PET/CT for cancer drug discovery and development cannot be overlooked. Curr Cancer Drug Targets 21:944–952. https://doi.org/10.2174/1568009621666210720143826
doi: 10.2174/1568009621666210720143826 pubmed: 34288841
Seban R-D, Champion L, Schwartz LH, Dercle L (2021) Spleen glucose metabolism on [18F]-FDG PET/CT: a dynamic double-edged biomarker predicting outcome in cancer patients. Eur J Nucl Med Mol Imaging 48:2309–2311. https://doi.org/10.1007/s00259-020-05126-w
doi: 10.1007/s00259-020-05126-w pubmed: 33420612
Prigent K, Lasnon C, Ezine E et al (2021) Assessing immune organs on 18F-FDG PET/CT imaging for therapy monitoring of immune checkpoint inhibitors: inter-observer variability, prognostic value and evolution during the treatment course of melanoma patients. Eur J Nucl Med Mol Imaging 48:2573–2585. https://doi.org/10.1007/s00259-020-05103-3
doi: 10.1007/s00259-020-05103-3 pubmed: 33432374

Auteurs

Guillaume Manson (G)

Department of Hematology, University Hospital of Rennes, INSERM U1236, 2 rue Henri le Guilloux, 35 000, Rennes, France. Guillaume.manson@chu-rennes.fr.

Amaeshi Chukwunonye Lemchukwu (AC)

Department of Internal Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA.

Fatima-Zohra Mokrane (FZ)

Department of Radiology, University Hospital of Toulouse, Toulouse, France.

Egesta Lopci (E)

Nuclear Medicine, IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, MI, Italy.

Nicolas Aide (N)

Nuclear Medicine Department, Caen University Hospital, Caen, France.

Laetitia Vercellino (L)

Department of Nuclear Medicine, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris (APHP), Paris, France.

Roch Houot (R)

Department of Hematology, University Hospital of Rennes, INSERM U1236, 2 rue Henri le Guilloux, 35 000, Rennes, France.

Laurent Dercle (L)

Department of Radiology, Columbia University Medical Center, New York, NY, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH