Phenotypic and mutational spectrum of ROR2-related Robinow syndrome.
HPO terms
WNT pathway
chromosome microarray analysis
craniofacial morphology
exonic deletion
next-generation sequencing
quantitative phenotyping cluster heatmap
skeletal dysplasia
Journal
Human mutation
ISSN: 1098-1004
Titre abrégé: Hum Mutat
Pays: United States
ID NLM: 9215429
Informations de publication
Date de publication:
07 2022
07 2022
Historique:
revised:
23
03
2022
received:
24
06
2021
accepted:
24
03
2022
pubmed:
29
3
2022
medline:
10
6
2022
entrez:
28
3
2022
Statut:
ppublish
Résumé
Robinow syndrome is characterized by a triad of craniofacial dysmorphisms, disproportionate-limb short stature, and genital hypoplasia. A significant degree of phenotypic variability seems to correlate with different genes/loci. Disturbances of the noncanonical WNT-pathway have been identified as the main cause of the syndrome. Biallelic variants in ROR2 cause an autosomal recessive form of the syndrome with distinctive skeletal findings. Twenty-two patients with a clinical diagnosis of autosomal recessive Robinow syndrome were screened for variants in ROR2 using multiple molecular approaches. We identified 25 putatively pathogenic ROR2 variants, 16 novel, including single nucleotide variants and exonic deletions. Detailed phenotypic analyses revealed that all subjects presented with a prominent forehead, hypertelorism, short nose, abnormality of the nasal tip, brachydactyly, mesomelic limb shortening, short stature, and genital hypoplasia in male patients. A total of 19 clinical features were present in more than 75% of the subjects, thus pointing to an overall uniformity of the phenotype. Disease-causing variants in ROR2, contribute to a clinically recognizable autosomal recessive trait phenotype with multiple skeletal defects. A comprehensive quantitative clinical evaluation of this cohort delineated the phenotypic spectrum of ROR2-related Robinow syndrome. The identification of exonic deletion variant alleles further supports the contention of a loss-of-function mechanism in the etiology of the syndrome.
Identifiants
pubmed: 35344616
doi: 10.1002/humu.24375
pmc: PMC9177636
mid: NIHMS1793937
doi:
Substances chimiques
ROR2 protein, human
EC 2.7.10.1
Receptor Tyrosine Kinase-like Orphan Receptors
EC 2.7.10.1
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
900-918Subventions
Organisme : NHGRI NIH HHS
ID : UM1HG006542
Pays : United States
Organisme : NHGRI NIH HHS
ID : UM1 HG006542
Pays : United States
Organisme : NICHD NIH HHS
ID : R03 HD092569
Pays : United States
Organisme : NINDS NIH HHS
ID : R35 NS105078
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM132589
Pays : United States
Informations de copyright
© 2022 Wiley Periodicals LLC.
Références
Am J Med Genet A. 2020 Nov;182(11):2632-2640
pubmed: 32888393
Hum Genet. 2007 Nov;122(3-4):389-95
pubmed: 17665217
Am J Hum Genet. 2015 Apr 2;96(4):623-30
pubmed: 25817014
Am J Med Genet A. 2018 Mar;176(3):739-742
pubmed: 29383834
HGG Adv. 2021 Dec 03;3(1):100074
pubmed: 35047859
Am J Dis Child. 1969 Jun;117(6):645-51
pubmed: 5771504
Dev Dyn. 2010 Jan;239(1):327-37
pubmed: 19918918
Am J Med Genet A. 2021 Dec;185(12):3584-3592
pubmed: 32974972
Am J Med Genet A. 2021 Dec;185(12):3593-3600
pubmed: 33048444
Nat Rev Genet. 2016 Apr;17(4):224-38
pubmed: 26924765
Clin Genet. 2009 Apr;75(4):394-400
pubmed: 19236432
BMC Bioinformatics. 2014 Jan 29;15:30
pubmed: 24475911
Genet Med. 2019 Apr;21(4):798-812
pubmed: 30655598
Gene Expr Patterns. 2009 Oct;9(7):520-7
pubmed: 19595791
Genes Environ. 2016 Sep 01;38(1):17
pubmed: 27588157
Am J Hum Genet. 2018 Jan 4;102(1):27-43
pubmed: 29276006
Am J Med Genet A. 2021 Dec;185(12):3606-3612
pubmed: 33237614
Cell. 2011 Sep 30;147(1):32-43
pubmed: 21962505
Curr Top Dev Biol. 2017;123:105-142
pubmed: 28236965
Clin Genet. 2011 Jul;80(1):15-24
pubmed: 21496006
Am J Med Genet A. 2015 Dec;167A(12):3054-61
pubmed: 26284319
Am J Med Genet A. 2018 Apr;176(4):1030-1036
pubmed: 29575631
N Engl J Med. 2019 Jun 20;380(25):2478-2480
pubmed: 31216405
Am J Hum Genet. 2000 Oct;67(4):822-31
pubmed: 10986040
Nucleic Acids Res. 2012 Jul;40(Web Server issue):W452-7
pubmed: 22689647
Genet Med. 2015 May;17(5):405-24
pubmed: 25741868
Cell. 2019 Mar 7;176(6):1310-1324.e10
pubmed: 30827684
Nat Genet. 2000 Aug;25(4):423-6
pubmed: 10932187
Am J Med Genet A. 2007 Feb 15;143(4):320-5
pubmed: 17256787
J Med Genet. 1978 Apr;15(2):123-7
pubmed: 641945
Nat Genet. 2000 Aug;25(4):419-22
pubmed: 10932186
Nat Genet. 2014 Mar;46(3):310-5
pubmed: 24487276
Nat Methods. 2010 Apr;7(4):248-9
pubmed: 20354512
Genome Med. 2017 Mar 21;9(1):26
pubmed: 28327206
Am J Hum Genet. 2015 Apr 2;96(4):612-22
pubmed: 25817016
Am J Med Genet A. 2021 Dec;185(12):3576-3583
pubmed: 32954672
Dev Dyn. 2004 Feb;229(2):400-10
pubmed: 14745966
Cell Mol Biol (Noisy-le-grand). 1999 Jul;45(5):653-9
pubmed: 10512196
Genome Res. 2018 Aug;28(8):1228-1242
pubmed: 29907612
Am J Hum Genet. 2016 Mar 3;98(3):553-561
pubmed: 26924530
Dev Dyn. 2009 May;238(5):1150-65
pubmed: 19334275
Am J Med Genet A. 2021 Nov;185(11):3294-3313
pubmed: 34405553
Am J Med Genet A. 2021 Dec;185(12):3601-3605
pubmed: 33277809
Hum Mol Genet. 2005 Sep 1;14(17):2559-69
pubmed: 16049033
Eur J Med Genet. 2012 Feb;55(2):103-8
pubmed: 22178368