Phase-Field Investigation of Lithium Electrodeposition at Different Applied Overpotentials and Operating Temperatures.

anode batteries dendrites interfaces lithium phase field

Journal

ACS applied materials & interfaces
ISSN: 1944-8252
Titre abrégé: ACS Appl Mater Interfaces
Pays: United States
ID NLM: 101504991

Informations de publication

Date de publication:
06 Apr 2022
Historique:
pubmed: 29 3 2022
medline: 29 3 2022
entrez: 28 3 2022
Statut: ppublish

Résumé

Li metal is an exciting anode for high-energy Li-ion batteries and other future battery technologies due to its high energy density and low redox potential. Despite their high promise, the commercialization of Li-metal-based batteries has been hampered due to the formation of dendrites that lead to mechanical instability, energy loss, and eventual internal short circuits. In recent years, the mechanism of dendrite formation and the strategies to suppress their growth have been studied intensely. However, the effect of applied overpotential and operating temperature on dendrite formation and their growth rate remains to be fully understood. Here, we elucidate the correlation between the applied overpotential and operating temperature to the dendrite height and tortuosity of the Li-metal surface during electrodeposition using phase-field model simulations. We identify an optimal operating temperature of a half-cell consisting of a Li metal anode and 1 M LiPF

Identifiants

pubmed: 35344661
doi: 10.1021/acsami.2c00900
pmc: PMC8990521
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

15275-15286

Références

ACS Appl Mater Interfaces. 2021 Jul 28;13(29):34320-34331
pubmed: 34275274
Science. 2018 Mar 30;359(6383):1513-1516
pubmed: 29599241
Adv Mater. 2020 Sep;32(38):e2004157
pubmed: 32776397
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Nov;86(5 Pt 1):051609
pubmed: 23214795
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jul;92(1):011301
pubmed: 26274118
Nano Lett. 2017 Feb 8;17(2):1132-1139
pubmed: 28072543
Angew Chem Int Ed Engl. 2019 Aug 12;58(33):11364-11368
pubmed: 31148342
Adv Sci (Weinh). 2021 Jan 06;8(5):2003301
pubmed: 33717853
Natl Sci Rev. 2020 Jul 02;8(2):nwaa150
pubmed: 34691570
Angew Chem Int Ed Engl. 2020 May 11;59(20):7743-7747
pubmed: 32160379
Small. 2018 Aug;14(34):e1801798
pubmed: 30035849
ACS Nano. 2020 Aug 25;14(8):9819-9831
pubmed: 32634303

Auteurs

Joonyeob Jeon (J)

Department of Energy Conversion and Storage, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
School of Mechanical Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, 04763, Seoul, South Korea.

Gil Ho Yoon (GH)

School of Mechanical Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, 04763, Seoul, South Korea.

Tejs Vegge (T)

Department of Energy Conversion and Storage, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.

Jin Hyun Chang (JH)

Department of Energy Conversion and Storage, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
PhaseTree ApS, DK-2300 Copenhagen, Denmark.

Classifications MeSH