C5b-9 Membrane Attack Complex Formation and Extracellular Vesicle Shedding in Barrett's Esophagus and Esophageal Adenocarcinoma.
complement system activation
exosome
extracellular vesicle (EV)
microvesicle
terminal complement component (SC5b-9)
Journal
Frontiers in immunology
ISSN: 1664-3224
Titre abrégé: Front Immunol
Pays: Switzerland
ID NLM: 101560960
Informations de publication
Date de publication:
2022
2022
Historique:
received:
23
12
2021
accepted:
10
02
2022
entrez:
29
3
2022
pubmed:
30
3
2022
medline:
3
5
2022
Statut:
epublish
Résumé
The early complement components have emerged as mediators of pro-oncogenic inflammation, classically inferred to cause terminal complement activation, but there are limited data on the activity of terminal complement in cancer. We previously reported elevated serum and tissue C9, the terminal complement component, in esophageal adenocarcinoma (EAC) compared to the precursor condition Barrett's Esophagus (BE) and healthy controls. Here, we investigate the level and cellular fates of the terminal complement complex C5b-9, also known as the membrane attack complex. Punctate C5b-9 staining and diffuse C9 staining was detected in BE and EAC by multiplex immunohistofluorescence without corresponding increase of C9 mRNA transcript. Increased C9 and C5b-9 staining were observed in the sequence normal squamous epithelium, BE, low- and high-grade dysplasia, EAC. C5b-9 positive esophageal cells were morphologically intact, indicative of sublytic or complement-evasion mechanisms. To investigate this at a cellular level, we exposed non-dysplastic BE (BAR-T and CP-A), high-grade dysplastic BE (CP-B and CP-D) and EAC (FLO-1 and OE-33) cell lines to the same sublytic dose of immunopurified human C9 (3 µg/ml) in the presence of C9-depleted human serum. Cellular C5b-9 was visualized by immunofluorescence confocal microscopy. Shed C5b-9 in the form of extracellular vesicles (EV) was measured in collected conditioned medium using recently described microfluidic immunoassay with capture by a mixture of three tetraspanin antibodies (CD9/CD63/CD81) and detection by surface-enhanced Raman scattering (SERS) after EV labelling with C5b-9 or C9 antibody conjugated SERS nanotags. Following C9 exposure, all examined cell lines formed C5b-9, internalized C5b-9, and shed C5b-9
Identifiants
pubmed: 35345676
doi: 10.3389/fimmu.2022.842023
pmc: PMC8957096
doi:
Substances chimiques
Complement C9
0
Complement Membrane Attack Complex
0
Complement System Proteins
9007-36-7
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
842023Subventions
Organisme : HCRW_
ID : HCRW_HF-19-1595
Pays : United Kingdom
Informations de copyright
Copyright © 2022 Kolka, Webster, Lepletier, Winterford, Brown, Richards, Zelek, Cao, Khamis, Shanmugasundaram, Wuethrich, Trau, Brosda, Barbour, Shah, Eslick, Clemons, Morgan and Hill.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
J Pathol. 2012 Mar;226(4):619-32
pubmed: 21984198
Int Immunol. 2005 Sep;17(9):1239-48
pubmed: 16091382
Front Immunol. 2018 Apr 11;9:721
pubmed: 29696020
World J Gastroenterol. 2005 Sep 7;11(33):5117-22
pubmed: 16127739
Oncotarget. 2019 Sep 10;10(52):5419-5438
pubmed: 31534628
Front Immunol. 2019 May 21;10:1074
pubmed: 31164885
Clin Sci (Lond). 2003 May;104(5):455-66
pubmed: 12580763
Nature. 2017 Jan 18;541(7637):321-330
pubmed: 28102259
Carcinogenesis. 2016 Apr;37(4):356-65
pubmed: 26905591
Proteomics. 2010 Sep;10(18):3210-21
pubmed: 20707004
Sci Rep. 2017 Aug 17;7(1):8643
pubmed: 28819100
Biol Cell. 2010 Dec;102(12):635-44
pubmed: 20843300
Clin Exp Immunol. 2012 Aug;169(2):100-8
pubmed: 22774984
Eur J Surg Oncol. 2016 Jan;42(1):140-8
pubmed: 26422587
Mol Cell Proteomics. 2018 Dec;17(12):2324-2334
pubmed: 30097534
Neoplasia. 2017 Nov;19(11):941-949
pubmed: 28968550
Ann Neurol. 2018 Mar;83(3):544-552
pubmed: 29406582
Proteomes. 2020 Sep 22;8(3):
pubmed: 32971853
Nat Commun. 2016 Feb 01;7:10346
pubmed: 26831747
J Proteome Res. 2014 Nov 7;13(11):4808-20
pubmed: 25134008
Clin Transl Oncol. 2021 Aug;23(8):1601-1610
pubmed: 33566304
J Pathol. 2020 Nov;252(3):317-329
pubmed: 32737994
Appl Spectrosc. 2007 Nov;61(11):1225-32
pubmed: 18028702
Gut. 1999 May;44(5):598-602
pubmed: 10205192
Sci Rep. 2019 Feb 14;9(1):2042
pubmed: 30765839
Front Oncol. 2021 Feb 03;10:553297
pubmed: 33614473
J Immunol. 1987 Jan 1;138(1):246-53
pubmed: 3782799
J Biol Chem. 2007 Oct 12;282(41):29977-86
pubmed: 17644516
Biochem J. 1989 Nov 15;264(1):1-14
pubmed: 2690818
Cell Mol Gastroenterol Hepatol. 2018 Jan 31;5(4):569-590
pubmed: 29930979
Nat Commun. 2014 Oct 29;5:5224
pubmed: 25351503
ACS Sens. 2021 Sep 24;6(9):3182-3194
pubmed: 34264628
Nature. 1985 Sep 12-18;317(6033):164-6
pubmed: 4033797
J Gastrointest Surg. 2009 Jan;13(1):44-53
pubmed: 18685901
Nat Rev Cancer. 2019 Dec;19(12):698-715
pubmed: 31666715
Nat Genet. 2015 Sep;47(9):1038-1046
pubmed: 26192915
Sci Adv. 2020 Feb 26;6(9):eaax3223
pubmed: 32133394
Am J Surg Pathol. 2018 Jul;42(7):918-926
pubmed: 29697438
Eur J Immunol. 1992 May;22(5):1207-13
pubmed: 1577063
J Clin Invest. 2017 Mar 1;127(3):780-789
pubmed: 28248200
Mult Scler. 2021 Apr;27(4):509-518
pubmed: 32669030
Mol Cell Proteomics. 2015 Nov;14(11):3023-39
pubmed: 26404905
Front Immunol. 2019 May 03;10:865
pubmed: 31130944
Cancers (Basel). 2021 Jun 08;13(12):
pubmed: 34201241