Contact tracing-induced Allee effect in disease dynamics.
Allee effect
Alternative states
Non-pharmaceutical interventions
Outbreak threshold
SARS
Super-spreader
Super-spreading
TETRIS
TEst-TRace-ISolate
Journal
Journal of theoretical biology
ISSN: 1095-8541
Titre abrégé: J Theor Biol
Pays: England
ID NLM: 0376342
Informations de publication
Date de publication:
07 06 2022
07 06 2022
Historique:
received:
06
07
2021
revised:
22
03
2022
accepted:
24
03
2022
pubmed:
30
3
2022
medline:
27
4
2022
entrez:
29
3
2022
Statut:
ppublish
Résumé
Contact tracing, case isolation, quarantine, social distancing, and other non-pharmaceutical interventions (NPIs) have been a cornerstone in managing the COVID-19 pandemic. However, their effects on disease dynamics are not fully understood. Saturation of contact tracing caused by the increase of infected individuals has been recognized as a crucial variable by healthcare systems worldwide. Here, we model this saturation process with a mechanistic and a phenomenological model and show that it induces an Allee effect which could determine an infection threshold between two alternative states-containment and outbreak. This transition was considered elsewhere as a response to the strength of NPIs, but here we show that they may be also determined by the number of infected individuals. As a consequence, timing of NPIs implementation and relaxation after containment is critical to their effectiveness. Containment strategies such as vaccination or mobility restriction may interact with contact tracing-induced Allee effect. Each strategy in isolation tends to show diminishing returns, with a less than proportional effect of the intervention on disease containment. However, when combined, their suppressing potential is enhanced. Relaxation of NPIs after disease containment--e.g. because vaccination--have to be performed in attention to avoid crossing the infection threshold required to a novel outbreak. The recognition of a contact tracing-induced Allee effect, its interaction with other NPIs and vaccination, and the existence of tipping points contributes to the understanding of several features of disease dynamics and its response to containment interventions. This knowledge may be of relevance for explaining the dynamics of diseases in different regions and, more importantly, as input for guiding the use of NPIs, vaccination campaigns, and its combination for the management of epidemic outbreaks.
Identifiants
pubmed: 35346665
pii: S0022-5193(22)00107-2
doi: 10.1016/j.jtbi.2022.111109
pmc: PMC8956350
pii:
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
111109Informations de copyright
Copyright © 2022 Elsevier Ltd. All rights reserved.
Déclaration de conflit d'intérêts
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Références
Nat Hum Behav. 2020 Jun;4(6):588-596
pubmed: 32499576
Nature. 2020 Dec;588(7838):384-387
pubmed: 33318682
Science. 2020 May 8;368(6491):
pubmed: 32234805
Science. 2021 Feb 26;371(6532):916-921
pubmed: 33479118
Nat Hum Behav. 2021 Aug;5(8):1009-1020
pubmed: 34158650
Science. 2020 Jul 10;369(6500):
pubmed: 32414780
Phys Rev Lett. 2006 May 26;96(20):208701
pubmed: 16803215
Sci Adv. 2020 Dec 4;6(49):
pubmed: 33158911
BMC Med. 2019 Aug 22;17(1):164
pubmed: 31438953
Nat Med. 2020 May;26(5):672-675
pubmed: 32296168
Science. 2020 Jul 24;369(6502):413-422
pubmed: 32532802
Infect Dis Model. 2020 Feb 14;5:256-263
pubmed: 32110742
Science. 2020 May 15;368(6492):742-746
pubmed: 32269067
Math Biosci. 2016 Jan;271:136-45
pubmed: 26593704
Sci Rep. 2021 Mar 25;11(1):6848
pubmed: 33767222
Epidemics. 2016 Jun;15:27-37
pubmed: 27266847
Science. 2020 Nov 6;370(6517):691-697
pubmed: 33154136
Lancet Glob Health. 2020 Apr;8(4):e488-e496
pubmed: 32119825
PLoS Med. 2021 Apr 30;18(4):e1003585
pubmed: 33930019
Proc Natl Acad Sci U S A. 2020 Jul 14;117(28):16092-16095
pubmed: 32581126
Philos Trans R Soc Lond B Biol Sci. 2019 Jun 24;374(1775):20180275
pubmed: 31056048
Nature. 2020 Aug;584(7820):257-261
pubmed: 32512579
Ecol Lett. 2007 Jan;10(1):36-43
pubmed: 17204115
Tour Manag. 2012 Feb;33(1):89-99
pubmed: 32287736
Nature. 2005 Nov 17;438(7066):355-9
pubmed: 16292310
Nat Commun. 2021 Mar 8;12(1):1501
pubmed: 33686075
Trends Ecol Evol. 1999 Oct;14(10):405-410
pubmed: 10481205
Nature. 2020 Aug;584(7820):262-267
pubmed: 32512578
Science. 2020 May 1;368(6490):489-493
pubmed: 32179701
Ecol Lett. 2009 Apr;12(4):302-14
pubmed: 19292792
Sci Rep. 2020 Dec 3;10(1):21040
pubmed: 33273598
Proc Natl Acad Sci U S A. 2017 Apr 11;114(15):4023-4028
pubmed: 28351976
Int J Infect Dis. 2020 May;94:96-102
pubmed: 32251789
Int J Infect Dis. 2020 May;94:116-118
pubmed: 32320809
Science. 2021 Feb 26;371(6532):890-891
pubmed: 33479122
J R Soc Interface. 2010 Sep 6;7(50):1247-56
pubmed: 20504800
JAMA. 2007 Aug 8;298(6):644-54
pubmed: 17684187
Lancet Infect Dis. 2021 Jun;21(6):793-802
pubmed: 33743847
Lancet Infect Dis. 2021 Mar;21(3):333-343
pubmed: 33152271
Nat Microbiol. 2019 Oct;4(10):1612-1619
pubmed: 31541212
Nature. 2006 Nov 16;444(7117):361-3
pubmed: 17108964
BMC Med. 2014 Oct 10;12:196
pubmed: 25300956
Science. 2020 Jun 26;368(6498):1422-1424
pubmed: 32461212
Science. 2020 Sep 18;369(6510):1465-1470
pubmed: 32680881
Int J Environ Res Public Health. 2020 May 24;17(10):
pubmed: 32456346
Nonlinear Dyn. 2020;101(3):1561-1581
pubmed: 32836822
Nat Hum Behav. 2020 Dec;4(12):1303-1312
pubmed: 33199859
Lancet Infect Dis. 2020 Sep;20(9):1025-1033
pubmed: 32445710
Proc Natl Acad Sci U S A. 2020 Dec 22;117(51):32764-32771
pubmed: 33262277
PLoS One. 2006 Dec 20;1:e12
pubmed: 17183638