Giant tunable spin Hall angle in sputtered Bi
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
28 Mar 2022
28 Mar 2022
Historique:
received:
21
09
2021
accepted:
23
02
2022
entrez:
29
3
2022
pubmed:
30
3
2022
medline:
30
3
2022
Statut:
epublish
Résumé
Finding an effective way to greatly tune spin Hall angle in a low power manner is of fundamental importance for tunable and energy-efficient spintronic devices. Recently, topological insulator of Bi
Identifiants
pubmed: 35347125
doi: 10.1038/s41467-022-29281-w
pii: 10.1038/s41467-022-29281-w
pmc: PMC8960771
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1650Informations de copyright
© 2022. The Author(s).
Références
Liu, L. Q. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).
doi: 10.1126/science.1218197
Manchon, A. et al. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 91, 035004 (2019).
doi: 10.1103/RevModPhys.91.035004
Ryu, J., Lee, S., Lee, K. J. & Park, B. G. Current-induced spin-orbit torques for spintronic applications. Adv. Mater. 32, 1907148 (2020).
doi: 10.1002/adma.201907148
Demasius, K. U. et al. Enhanced spin-orbit torques by oxygen incorporation in tungsten films. Nat. Commun. 7, 10644 (2016).
pubmed: 26912203
pmcid: 4773389
doi: 10.1038/ncomms10644
Baek, S. C. et al. Spin currents and spin-orbit torques in ferromagnetic trilayers. Nat. Mater. 17, 509–513 (2018).
pubmed: 29555998
doi: 10.1038/s41563-018-0041-5
Lu, Q. et al. Enhancement of the spin-mixing conductance in Co-Fe-B/W bilayers by interface engineering. Phys. Rev. Appl. 12, 064035 (2019).
doi: 10.1103/PhysRevApplied.12.064035
Koo, H. C. et al. Rashba effect in functional spintronic devices. Adv. Mater. 32, 2002117 (2020).
doi: 10.1002/adma.202002117
Khang, N. H. D., Ueda, Y. & Hai, P. N. A conductive topological insulator with large spin Hall effect for ultralow power spin-orbit torque switching. Nat. Mater. 17, 808–813 (2018).
pubmed: 30061731
doi: 10.1038/s41563-018-0137-y
Husain, S. et al. Large damping-like spin-orbit torque in a 2D conductive 1T-TaS
pubmed: 32786947
pmcid: 7496736
doi: 10.1021/acs.nanolett.0c01955
Zhang, W. et al. Spin Hall effects in metallic antiferromagnets. Phys. Rev. Lett. 113, 196602 (2014).
pubmed: 25415914
doi: 10.1103/PhysRevLett.113.196602
Ding, J. et al. Switching of a magnet by spin-orbit torque from a topological Dirac semimetal. Adv. Mater. 33, 2005909 (2021).
doi: 10.1002/adma.202005909
Zhao, B. et al. Unconventional charge-spin conversion in Weyl-semimetal WTe
doi: 10.1002/adma.202000818
Xu, H. et al. High spin Hall conductivity in large-area type-II Dirac semimetal PtTe
doi: 10.1002/adma.202000513
Mellnik, A. R. et al. Spin-transfer torque generated by a topological insulator. Nature 511, 449–451 (2014).
pubmed: 25056062
doi: 10.1038/nature13534
Li, C. H. et al. Electrical detection of charge-current-induced spin polarization due to spin-momentum locking in Bi
pubmed: 24561354
doi: 10.1038/nnano.2014.16
Wang, Y. et al. Room temperature magnetization switching in topological insulator-ferromagnet heterostructures by spin-orbit torques. Nat. Commun. 8, 1364–1370 (2017).
pubmed: 29118331
pmcid: 5677620
doi: 10.1038/s41467-017-01583-4
Dc, M. et al. Room-temperature high spin-orbit torque due to quantum confinement in sputtered Bi
pubmed: 30061733
doi: 10.1038/s41563-018-0136-z
Dc, M. et al. Observation of high spin-to-charge conversion by sputtered bismuth selenide thin films at room temperature. Nano Lett. 19, 4836–4844 (2019).
pubmed: 31283247
doi: 10.1021/acs.nanolett.8b05011
Filianina, M. et al. Electric-field control of spin-orbit torques in perpendicularly magnetized W/CoFeB/MgO Films. Phys. Rev. Lett. 124, 217701 (2020).
pubmed: 32530662
doi: 10.1103/PhysRevLett.124.217701
Shibata, K. et al. Large anisotropic deformation of skyrmions in strained crystal. Nat. Nanotechnol. 10, 589–592 (2015).
pubmed: 26030654
doi: 10.1038/nnano.2015.113
Wang, X. et al. E-field control of the RKKY interaction in FeCoB/Ru/FeCoB/PMN-PT (011) multiferroic heterostructures. Adv. Mater. 30, 1803612 (2018).
doi: 10.1002/adma.201803612
Nan, T. et al. A strain-mediated magnetoelectric-spin-torque hybrid structure. Adv. Funct. Mater. 29, 1806371 (2018).
doi: 10.1002/adfm.201806371
Sahin, C. & Flatte, M. E. Tunable giant spin Hall conductivities in a strong spin-orbit semimetal: Bi
pubmed: 25815962
doi: 10.1103/PhysRevLett.114.107201
Dc, M. et al. Room-temperature spin-to-charge conversion in sputtered bismuth selenide thin films via spin pumping from yttrium iron garnet. Appl. Phys. Lett. 114, 102401 (2019).
doi: 10.1063/1.5054806
Nascimento, V. B. et al. XPS and EELS study of the bismuth selenide. J. Electron Spectrosc. Relat. Phenom. 104, 99–107 (1999).
doi: 10.1016/S0368-2048(99)00012-2
Oprea, B., Radu, T. & Simon, S. XPS investigation of atomic environment changes on surface of B
doi: 10.1016/j.jnoncrysol.2013.07.024
Ramaswamy, R. et al. Spin orbit torque driven magnetization switching with sputtered Bi
doi: 10.1088/1361-6463/ab0b96
Zhang, G. et al. Quintuple-layer epitaxy of thin films of topological insulator Bi
doi: 10.1063/1.3200237
Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).
doi: 10.1016/0304-8853(96)00062-5
Kawaguchi, M. et al. Current-induced effective fields detected by magnetotrasport measurements. Appl. Phys. Express 6, 113002 (2013).
doi: 10.7567/APEX.6.113002
Chi, Z. D. et al. The spin Hall effect of Bi-Sb alloys driven by thermally excited Dirac-like electrons. Sci. Adv. 6, eaay2324 (2020).
pubmed: 32181344
pmcid: 7060068
doi: 10.1126/sciadv.aay2324
Montoya, E. et al. Spin transport in tantalum studied using magnetic single and double layers. Phys. Rev. B 94, 054416 (2016).
doi: 10.1103/PhysRevB.94.054416
Chen, X. Z. et al. Observation of the antiferromagnetic spin Hall effect. Nat. Mater. 20, 800–804 (2021).
pubmed: 33633354
doi: 10.1038/s41563-021-00946-z
Nan, T. et al. Quantification of strain and charge co-mediated magnetoelectric coupling on ultra-thin Permalloy/PMN-PT interface. Sci. Rep. 4, 3688–3696 (2014).
pubmed: 24418911
pmcid: 3891213
doi: 10.1038/srep03688
Chen, A. et al. Giant nonvolatile manipulation of magnetoresistance in magnetic tunnel junctions by electric fields via magnetoelectric coupling. Nat. Commun. 10, 243 (2019).
pubmed: 30651541
pmcid: 6335399
doi: 10.1038/s41467-018-08061-5
Liu, M. et al. Voltage-impulse-induced non-volatile ferroelastic switching of ferromagnetic resonance for reconfigurable magnetoelectric microwave devices. Adv. Mater. 25, 4886–4892 (2013).
pubmed: 23857709
doi: 10.1002/adma.201301989
Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).
doi: 10.1103/PhysRevB.47.558
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).
doi: 10.1103/PhysRevB.59.1758
Pizzi, G. et al. Wannier90 as a community code: new features and applications. J. Phys.—Condens. Matter 32, 165902 (2020).
pubmed: 31658458
doi: 10.1088/1361-648X/ab51ff
Guo, G. Y., Yao, Y. & Niu, Q. Ab initio calculation of the intrinsic spin Hall effect in semiconductors. Phys. Rev. Lett. 94, 226601 (2005).
pubmed: 16090421
doi: 10.1103/PhysRevLett.94.226601
Liu, M. et al. Electrical tuning of magnetism in Fe
doi: 10.1063/1.3354104
Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).
doi: 10.1063/1.1564060
Heyd, J. & Scuseria, G. E. Efficient hybrid density functional calculations in solids: Assessment of the Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional. J. Chem. Phys. 121, 1187–1192 (2004).
pubmed: 15260659
doi: 10.1063/1.1760074
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
pubmed: 10062328
doi: 10.1103/PhysRevLett.77.3865
Klimes, J., Bowler, D. R. & Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 83, 195131 (2011).
doi: 10.1103/PhysRevB.83.195131
Dion, M., Rydberg, H., Schroder, E., Langreth, D. C. & Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 92, 246401 (2004).
pubmed: 15245113
doi: 10.1103/PhysRevLett.92.246401