Giant tunable spin Hall angle in sputtered Bi


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
28 Mar 2022
Historique:
received: 21 09 2021
accepted: 23 02 2022
entrez: 29 3 2022
pubmed: 30 3 2022
medline: 30 3 2022
Statut: epublish

Résumé

Finding an effective way to greatly tune spin Hall angle in a low power manner is of fundamental importance for tunable and energy-efficient spintronic devices. Recently, topological insulator of Bi

Identifiants

pubmed: 35347125
doi: 10.1038/s41467-022-29281-w
pii: 10.1038/s41467-022-29281-w
pmc: PMC8960771
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1650

Informations de copyright

© 2022. The Author(s).

Références

Liu, L. Q. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).
doi: 10.1126/science.1218197
Manchon, A. et al. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 91, 035004 (2019).
doi: 10.1103/RevModPhys.91.035004
Ryu, J., Lee, S., Lee, K. J. & Park, B. G. Current-induced spin-orbit torques for spintronic applications. Adv. Mater. 32, 1907148 (2020).
doi: 10.1002/adma.201907148
Demasius, K. U. et al. Enhanced spin-orbit torques by oxygen incorporation in tungsten films. Nat. Commun. 7, 10644 (2016).
pubmed: 26912203 pmcid: 4773389 doi: 10.1038/ncomms10644
Baek, S. C. et al. Spin currents and spin-orbit torques in ferromagnetic trilayers. Nat. Mater. 17, 509–513 (2018).
pubmed: 29555998 doi: 10.1038/s41563-018-0041-5
Lu, Q. et al. Enhancement of the spin-mixing conductance in Co-Fe-B/W bilayers by interface engineering. Phys. Rev. Appl. 12, 064035 (2019).
doi: 10.1103/PhysRevApplied.12.064035
Koo, H. C. et al. Rashba effect in functional spintronic devices. Adv. Mater. 32, 2002117 (2020).
doi: 10.1002/adma.202002117
Khang, N. H. D., Ueda, Y. & Hai, P. N. A conductive topological insulator with large spin Hall effect for ultralow power spin-orbit torque switching. Nat. Mater. 17, 808–813 (2018).
pubmed: 30061731 doi: 10.1038/s41563-018-0137-y
Husain, S. et al. Large damping-like spin-orbit torque in a 2D conductive 1T-TaS
pubmed: 32786947 pmcid: 7496736 doi: 10.1021/acs.nanolett.0c01955
Zhang, W. et al. Spin Hall effects in metallic antiferromagnets. Phys. Rev. Lett. 113, 196602 (2014).
pubmed: 25415914 doi: 10.1103/PhysRevLett.113.196602
Ding, J. et al. Switching of a magnet by spin-orbit torque from a topological Dirac semimetal. Adv. Mater. 33, 2005909 (2021).
doi: 10.1002/adma.202005909
Zhao, B. et al. Unconventional charge-spin conversion in Weyl-semimetal WTe
doi: 10.1002/adma.202000818
Xu, H. et al. High spin Hall conductivity in large-area type-II Dirac semimetal PtTe
doi: 10.1002/adma.202000513
Mellnik, A. R. et al. Spin-transfer torque generated by a topological insulator. Nature 511, 449–451 (2014).
pubmed: 25056062 doi: 10.1038/nature13534
Li, C. H. et al. Electrical detection of charge-current-induced spin polarization due to spin-momentum locking in Bi
pubmed: 24561354 doi: 10.1038/nnano.2014.16
Wang, Y. et al. Room temperature magnetization switching in topological insulator-ferromagnet heterostructures by spin-orbit torques. Nat. Commun. 8, 1364–1370 (2017).
pubmed: 29118331 pmcid: 5677620 doi: 10.1038/s41467-017-01583-4
Dc, M. et al. Room-temperature high spin-orbit torque due to quantum confinement in sputtered Bi
pubmed: 30061733 doi: 10.1038/s41563-018-0136-z
Dc, M. et al. Observation of high spin-to-charge conversion by sputtered bismuth selenide thin films at room temperature. Nano Lett. 19, 4836–4844 (2019).
pubmed: 31283247 doi: 10.1021/acs.nanolett.8b05011
Filianina, M. et al. Electric-field control of spin-orbit torques in perpendicularly magnetized W/CoFeB/MgO Films. Phys. Rev. Lett. 124, 217701 (2020).
pubmed: 32530662 doi: 10.1103/PhysRevLett.124.217701
Shibata, K. et al. Large anisotropic deformation of skyrmions in strained crystal. Nat. Nanotechnol. 10, 589–592 (2015).
pubmed: 26030654 doi: 10.1038/nnano.2015.113
Wang, X. et al. E-field control of the RKKY interaction in FeCoB/Ru/FeCoB/PMN-PT (011) multiferroic heterostructures. Adv. Mater. 30, 1803612 (2018).
doi: 10.1002/adma.201803612
Nan, T. et al. A strain-mediated magnetoelectric-spin-torque hybrid structure. Adv. Funct. Mater. 29, 1806371 (2018).
doi: 10.1002/adfm.201806371
Sahin, C. & Flatte, M. E. Tunable giant spin Hall conductivities in a strong spin-orbit semimetal: Bi
pubmed: 25815962 doi: 10.1103/PhysRevLett.114.107201
Dc, M. et al. Room-temperature spin-to-charge conversion in sputtered bismuth selenide thin films via spin pumping from yttrium iron garnet. Appl. Phys. Lett. 114, 102401 (2019).
doi: 10.1063/1.5054806
Nascimento, V. B. et al. XPS and EELS study of the bismuth selenide. J. Electron Spectrosc. Relat. Phenom. 104, 99–107 (1999).
doi: 10.1016/S0368-2048(99)00012-2
Oprea, B., Radu, T. & Simon, S. XPS investigation of atomic environment changes on surface of B
doi: 10.1016/j.jnoncrysol.2013.07.024
Ramaswamy, R. et al. Spin orbit torque driven magnetization switching with sputtered Bi
doi: 10.1088/1361-6463/ab0b96
Zhang, G. et al. Quintuple-layer epitaxy of thin films of topological insulator Bi
doi: 10.1063/1.3200237
Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).
doi: 10.1016/0304-8853(96)00062-5
Kawaguchi, M. et al. Current-induced effective fields detected by magnetotrasport measurements. Appl. Phys. Express 6, 113002 (2013).
doi: 10.7567/APEX.6.113002
Chi, Z. D. et al. The spin Hall effect of Bi-Sb alloys driven by thermally excited Dirac-like electrons. Sci. Adv. 6, eaay2324 (2020).
pubmed: 32181344 pmcid: 7060068 doi: 10.1126/sciadv.aay2324
Montoya, E. et al. Spin transport in tantalum studied using magnetic single and double layers. Phys. Rev. B 94, 054416 (2016).
doi: 10.1103/PhysRevB.94.054416
Chen, X. Z. et al. Observation of the antiferromagnetic spin Hall effect. Nat. Mater. 20, 800–804 (2021).
pubmed: 33633354 doi: 10.1038/s41563-021-00946-z
Nan, T. et al. Quantification of strain and charge co-mediated magnetoelectric coupling on ultra-thin Permalloy/PMN-PT interface. Sci. Rep. 4, 3688–3696 (2014).
pubmed: 24418911 pmcid: 3891213 doi: 10.1038/srep03688
Chen, A. et al. Giant nonvolatile manipulation of magnetoresistance in magnetic tunnel junctions by electric fields via magnetoelectric coupling. Nat. Commun. 10, 243 (2019).
pubmed: 30651541 pmcid: 6335399 doi: 10.1038/s41467-018-08061-5
Liu, M. et al. Voltage-impulse-induced non-volatile ferroelastic switching of ferromagnetic resonance for reconfigurable magnetoelectric microwave devices. Adv. Mater. 25, 4886–4892 (2013).
pubmed: 23857709 doi: 10.1002/adma.201301989
Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).
doi: 10.1103/PhysRevB.47.558
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).
doi: 10.1103/PhysRevB.59.1758
Pizzi, G. et al. Wannier90 as a community code: new features and applications. J. Phys.—Condens. Matter 32, 165902 (2020).
pubmed: 31658458 doi: 10.1088/1361-648X/ab51ff
Guo, G. Y., Yao, Y. & Niu, Q. Ab initio calculation of the intrinsic spin Hall effect in semiconductors. Phys. Rev. Lett. 94, 226601 (2005).
pubmed: 16090421 doi: 10.1103/PhysRevLett.94.226601
Liu, M. et al. Electrical tuning of magnetism in Fe
doi: 10.1063/1.3354104
Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).
doi: 10.1063/1.1564060
Heyd, J. & Scuseria, G. E. Efficient hybrid density functional calculations in solids: Assessment of the Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional. J. Chem. Phys. 121, 1187–1192 (2004).
pubmed: 15260659 doi: 10.1063/1.1760074
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
pubmed: 10062328 doi: 10.1103/PhysRevLett.77.3865
Klimes, J., Bowler, D. R. & Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 83, 195131 (2011).
doi: 10.1103/PhysRevB.83.195131
Dion, M., Rydberg, H., Schroder, E., Langreth, D. C. & Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 92, 246401 (2004).
pubmed: 15245113 doi: 10.1103/PhysRevLett.92.246401

Auteurs

Qi Lu (Q)

Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering, State Key Laboratory for Manufacturing System Engineering, Xi'an Jiaotong University, 710049, Xi'an, China.

Ping Li (P)

Center for Spintronics and Quantum System, State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049, Xi'an, China.

Zhixin Guo (Z)

Center for Spintronics and Quantum System, State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049, Xi'an, China. zxguo08@xjtu.edu.cn.

Guohua Dong (G)

Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering, State Key Laboratory for Manufacturing System Engineering, Xi'an Jiaotong University, 710049, Xi'an, China. guohuadong@xjtu.edu.cn.

Bin Peng (B)

Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering, State Key Laboratory for Manufacturing System Engineering, Xi'an Jiaotong University, 710049, Xi'an, China.

Xi Zha (X)

Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering, State Key Laboratory for Manufacturing System Engineering, Xi'an Jiaotong University, 710049, Xi'an, China.

Tai Min (T)

Center for Spintronics and Quantum System, State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049, Xi'an, China.

Ziyao Zhou (Z)

Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering, State Key Laboratory for Manufacturing System Engineering, Xi'an Jiaotong University, 710049, Xi'an, China.

Ming Liu (M)

Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering, State Key Laboratory for Manufacturing System Engineering, Xi'an Jiaotong University, 710049, Xi'an, China. mingliu@xjtu.edu.cn.

Classifications MeSH