Enhanced photonics devices based on low temperature plasma-deposited dichlorosilane-based ultra-silicon-rich nitride (Si
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
28 Mar 2022
28 Mar 2022
Historique:
received:
16
11
2021
accepted:
21
03
2022
entrez:
29
3
2022
pubmed:
30
3
2022
medline:
30
3
2022
Statut:
epublish
Résumé
Ultra-silicon-rich nitride with refractive indices ~ 3 possesses high nonlinear refractive index-100× higher than stoichiometric silicon nitride and presents absence of two-photon absorption, making it attractive to be used in nonlinear integrated optics at telecommunications wavelengths. Despite its excellent nonlinear properties, ultra-silicon-rich nitride photonics devices reported so far still have fairly low quality factors of [Formula: see text], which could be mainly attributed by the material absorption bonds. Here, we report low temperature plasma-deposited dichlorosilane-based ultra-silicon-rich nitride (Si
Identifiants
pubmed: 35347190
doi: 10.1038/s41598-022-09227-4
pii: 10.1038/s41598-022-09227-4
pmc: PMC8960789
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
5267Subventions
Organisme : National Research Foundation Singapore
ID : NRF-CRP18-2017-03
Informations de copyright
© 2022. The Author(s).
Références
Tan, D. T. H. et al. Nonlinear optics in ultra-silicon-rich nitride devices: Recent developments and future outlook. Adv. Phys. X 6, 1905544 (2021).
Sar, H., Gao, J. & Yang, X. 2D layered SiP as anisotropic nonlinear optical material. Sci. Rep. 11, 6372 (2021).
pubmed: 33737690
pmcid: 7973522
doi: 10.1038/s41598-021-85938-4
Tripathi, R. P. N., Gao, J. & Yang, X. Anisotropic optical responses of layered thallium arsenic sulfosalt gillulyite. Sci. Rep. 11, 22002 (2021).
pubmed: 34754041
pmcid: 8578543
doi: 10.1038/s41598-021-01542-6
Wang, W., Wu, Y., Wu, Q., Hua, J. & Zhao, J. Coherent nonlinear optical response spatial self-phase modulation in MoSe
pubmed: 26916605
pmcid: 4768144
doi: 10.1038/srep22072
Boltaev, G. S., Ganeev, R. A., Krishnendu, P. S., Zhang, K. & Guo, C. Nonlinear optical characterization of copper oxide nanoellipsoids. Sci. Rep. 9, 11414 (2019).
pubmed: 31388078
pmcid: 6684610
doi: 10.1038/s41598-019-47941-8
Priyadarshini, P. et al. Observation of high nonlinearity in Bi doped Bi
pubmed: 34728771
pmcid: 8563738
doi: 10.1038/s41598-021-01134-4
Ooi, K. J. A. et al. Pushing the limits of CMOS optical parametric amplifiers with USRN:Si
pubmed: 28051064
pmcid: 5216112
doi: 10.1038/ncomms13878
Choi, J. W. et al. High spectro-temporal compression on a nonlinear CMOS-chip. Light Sci. Appl. 10, 130 (2021).
pubmed: 34140461
pmcid: 8211677
doi: 10.1038/s41377-021-00572-z
Wang, T. et al. Supercontinuum generation in bandgap engineered, back-end CMOS compatible silicon rich nitride waveguides. Laser Photonics Rev. 9, 498–506 (2015).
doi: 10.1002/lpor.201500054
Tan, D. T. H., Ooi, K. J. A. & Ng, D. K. T. Nonlinear optics on silicon-rich-nitride—A high nonlinear figure of merit CMOS platform. Photonics Res. 6, B50–B66 (2018).
doi: 10.1364/PRJ.6.000B50
Sohn, B. U., Choi, J. W., Ng, D. K. T. & Tan, D. T. H. Optical nonlinearities in ultra-silicon-rich nitride characterized using z-scan measurements. Sci. Rep. 9, 10364 (2019).
pubmed: 31316096
pmcid: 6637241
doi: 10.1038/s41598-019-46865-7
Chen, G. F. R., Choi, J. W., Sahin, E., Ng, D. K. T. & Tan, D. T. H. On-chip 1 by 8 coarse wavelength division multiplexer and multi-wavelength source on ultra-silicon-rich nitride. Opt. Express 27, 23549–23557 (2019).
pubmed: 31510630
doi: 10.1364/OE.27.023549
Sahin, E., Ng, D. K. T. & Tan, D. T. H. Optical parametric gain in CMOS-compatible sub-100 μm photonic crystal waveguides. APL Photonics 5, 066108 (2020).
doi: 10.1063/5.0003633
Cao, Y. et al. Thermo-optically tunable spectral broadening in a nonlinear ultra-silicon-rich nitride Bragg grating. Photon. Res. 9, 596–604 (2021).
doi: 10.1364/PRJ.411073
Choi, J. W., Chen, G. F. R., Ng, D. K. T., Ooi, K. J. A. & Tan, D. T. H. Wideband nonlinear spectral broadening in ultra-short ultra-silicon rich nitride waveguides. Sci. Rep. 6, 27120 (2016).
pubmed: 27272558
pmcid: 4897639
doi: 10.1038/srep27120
Choi, J. W. et al. An optical parametric Bragg amplifier on a CMOS chip. Nanophotonics 10, 3507–3518 (2021).
doi: 10.1515/nanoph-2021-0302
Xing, P. et al. Silicon rich nitride ring resonators for rare-earth doped telecommunications-band amplifiers pumped at the O-band. Sci. Rep. 7, 9101 (2017).
pubmed: 28831178
pmcid: 5567208
doi: 10.1038/s41598-017-09732-x
Bucio, T. D. et al. Silicon nitride photonics for the near-infrared. IEEE J. Sel. Top. Quantum Electron. 26, 8200613 (2020).
doi: 10.1109/JSTQE.2019.2934127
Lacava, C. et al. Si-rich silicon nitride for nonlinear signal processing applications. Sci. Rep. 7, 1–13 (2017).
doi: 10.1038/s41598-017-00062-6
Nejadriahi, H. et al. Thermo-optic properties of silicon-rich silicon nitride for on-chip applications. Opt. Express 28, 24951–24960 (2020).
pubmed: 32907026
doi: 10.1364/OE.396969
Lin, G. R. et al. Si-rich SiN
pubmed: 25923653
pmcid: 4413840
doi: 10.1038/srep09611
Suzuki, N. FDTD analysis of two-photon absorption and free-carrier absorption in Si high-index-contrast waveguides. J. Lightwave Technol. 25, 2495–2501 (2007).
doi: 10.1109/JLT.2007.903298
Yin, L. & Agrawal, G. P. Impact of two-photon absorption on self-phase modulation in silicon waveguides. Opt. Lett. 32, 2031–2033 (2007).
pubmed: 17632633
doi: 10.1364/OL.32.002031
Ikeda, K., Saperstein, R. E., Alic, N. & Fainman, Y. Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides. Opt. Exp. 16, 12987–12994 (2008).
doi: 10.1364/OE.16.012987
Tan, D. T. H., Ikeda, K., Sun, P. C. & Fainman, Y. Group velocity dispersion and self phase modulation in silicon nitride waveguides. Appl. Phys. Lett. 96, 061101 (2010).
doi: 10.1063/1.3299008
Sahin, E. et al. Bragg soliton compression and fission on CMOS-compatible ultra-silicon-rich nitride. Laser Photonics Rev. 13, 1900114 (2019).
doi: 10.1002/lpor.201900114
Sahin, E. et al. Wideband spectral enhancement through on-chip Bragg-Soliton dynamics. Adv. Photonics Res. 2, 2100107 (2021).
doi: 10.1002/adpr.202100107
Ng, D. K. T. et al. Exploring high refractive index silicon-rich nitride films by low-temperature inductively coupled plasma chemical vapor deposition and applications for integrated waveguides. ACS Appl. Mater. Interfaces 7, 21884–21889 (2015).
pubmed: 26375453
doi: 10.1021/acsami.5b06329
Pfeiffer, M. H. P. et al. Photonic damascene process for low-loss high-confinement silicon nitride waveguides. IEEE J. Sel. Top. Quantum Electron. 24, 6101411 (2018).
doi: 10.1109/JSTQE.2018.2808258
Shim, E., Chen, Y., Masmanidis, S. & Li, M. Multisite silicon neural probes with integrated silicon nitride waveguides and gratings for optogenetic applications. Sci. Rep. 6, 22693 (2016).
pubmed: 26941111
pmcid: 4778012
doi: 10.1038/srep22693
Castellan, C. et al. On the origin of second harmonic generation in silicon waveguides with silicon nitride cladding. Sci. Rep. 9, 1088 (2019).
pubmed: 30705314
pmcid: 6355935
doi: 10.1038/s41598-018-37660-x
Misra, A., Preußler, S., Zhou, L. & Schneider, T. Nonlinearity- and dispersion-less integrated optical time magnifier based on a high-Q SiN microring resonator. Sci. Rep. 9, 14277 (2019).
pubmed: 31582796
pmcid: 6776544
doi: 10.1038/s41598-019-50691-2
Goto, T. & Hirai, T. J. ESCA study of amorphous CVD Si
doi: 10.1007/BF01730723
Narayanan, K., Elshaari, A. W. & Preble, S. F. Broadband all-optical modulation in hydrogenated amorphous silicon waveguides. Opt. Express 18, 9809–9814 (2010).
pubmed: 20588830
doi: 10.1364/OE.18.009809
Ng, D. K. T. et al. Improved CMOS-compatible ultra-silicon-rich nitride for non-linear optics. In Proc. SPIE 11682, Optical Components and Materials XVIII, 116820L (2021).
Lanford, W. A. & Rand, M. J. The hydrogen content of plasma-deposited silicon nitride. J. Appl. Phys. 49, 2473–2477 (1978).
doi: 10.1063/1.325095
Ay, F. & Aydinli, A. Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides. Opt. Mater. 26, 33–46 (2004).
doi: 10.1016/j.optmat.2003.12.004
Mao, S. C. et al. Low propagation loss SiN optical waveguide prepared by optimal low-hydrogen module. Opt. Express 16, 20809–20816 (2008).
pubmed: 19065219
doi: 10.1364/OE.16.020809
Bucio, T. D. et al. Material and optical properties of low-temperature NH3-free PECVD SiNx layers for photonic applications. J. Phys. D Appl. Phys. 50, 025106 (2017).
doi: 10.1088/1361-6463/50/2/025106
Mao, S. C., Xu, Y. L. & Lu, G. Correspondence relation between [N–H]/[Si–H] ratio and their optical loss properties in silicon nitride thin films. In 2009 4th IEEE Conference on Industrial Electronics and Applications, 3319–3322 (2009).
Hu, J., Sun, X., Agarwal, A. & Kimerling, L. C. Sensing nitrous oxide with QCL-coupled silicon-on-sapphire ring resonators. J. Opt. Soc. Am. B 26, 1032–1041 (2009).
doi: 10.1364/JOSAB.26.001032
Chrostowski, L. & Hochberg, M. Silicon Photonics Design From Devices to System (Cambridge University Press, 2015).
doi: 10.1017/CBO9781316084168
Rabiei, P., Steier, W. H., Zhang, C. & Dalton, L. R. Polymer micro-ring filters and modulators. J. Lightwave Technol. 20, 1968–1975 (2002).
doi: 10.1109/JLT.2002.803058
Smith, C. J. et al. Sensing nitrous oxide with QCL-coupled silicon-on-sapphire ring resonators. Opt. Express 23, 5491–5499 (2015).
pubmed: 25836782
doi: 10.1364/OE.23.005491
Pasquazi, A. et al. All-optical wavelength conversion in an integrated ring resonator. Opt. Express 18, 3858–3863 (2010).
pubmed: 20389396
doi: 10.1364/OE.18.003858
Moss, D. J., Morandotti, R., Gaeta, A. L. & Lipson, M. New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics. Nat. Photonics 7, 597–607 (2013).
doi: 10.1038/nphoton.2013.183
Heebner, J. E. & Boyd, R. W. Enhanced all—Optical switching by use of a nonlinear fiber ring resonator. Opt. Lett. 24, 847–849 (1999).
pubmed: 18073873
doi: 10.1364/OL.24.000847
Caspani, L. et al. Integrated sources of photon quantum states based on nonlinear optics. Light Sci. Appl. 6, e17100 (2017).
pubmed: 30167217
pmcid: 6062040
doi: 10.1038/lsa.2017.100
Engin, E. et al. Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement. Opt. Express 21, 27826–27834 (2013).
pubmed: 24514299
doi: 10.1364/OE.21.027826
Ferlauto, A. S. et al. Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics. J. Appl. Phys. 92, 2424–2436 (2002).
doi: 10.1063/1.1497462