Indoor green can modify the indoor dust microbial communities.
built environment
diversity
indoor
indoor plants
microbiota
Journal
Indoor air
ISSN: 1600-0668
Titre abrégé: Indoor Air
Pays: England
ID NLM: 9423515
Informations de publication
Date de publication:
03 2022
03 2022
Historique:
revised:
19
01
2022
received:
29
11
2021
accepted:
18
02
2022
entrez:
29
3
2022
pubmed:
30
3
2022
medline:
19
4
2022
Statut:
ppublish
Résumé
Little is known about the potential role of indoor plants in shaping the indoor microbiota. Within the ENVIRONAGE birth cohort, we collected settled dust and performed 16S and ITS amplicon sequencing and qPCR measurements to characterize the indoor microbiota, including bacterial and fungal loads and Chao1 richness, Shannon, and Simpson diversity indices. For 155 households, we obtained information on the number of indoor plants. We performed linear regression models adjusted for several a priori chosen covariables. Overall, an increase in indoor plants and density was associated with increased microbial diversity, but not load. For example, we found an increase of 64 (95%CI:3;125) and 26 (95%CI:4;48) units of bacterial and fungal taxa richness, respectively, in households with more than three plants compared to no plants. Our results support the hypothesis that indoor plants can enrich indoor microbial diversity, while impacts on microbial loads are not obvious.
Substances chimiques
Dust
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e13011Informations de copyright
© 2022 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Références
Klepeis NE, Nelson WC, Ott WR, et al. The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. J Expo Anal Environ Epidemiol. 2001;11(3):231-252.
Bonamichi-Santos R, et al. Microbiome and asthma: what have experimental models already taught us? J Immunol Res. 2015;2015: 614758.
Braun-Fahrländer C, Riedler J, Herz U, et al. Environmental exposure to endotoxin and its relation to asthma in school-age children. N Engl J Med. 2002;347(12):869-877.
Burbank AJ, Sood AK, Kesic MJ, et al. Environmental determinants of allergy and asthma in early life. J Allergy Clin Immunol. 2017;140(1):1-12.
Cho S-H, Reponen T, LeMasters G, et al. Mold damage in homes and wheezing in infants. Ann Allergy Asthma Immunol. 2006;97(4):539-545.
Dannemiller KC, Mendell MJ, Macher JM, et al. Next-generation DNA sequencing reveals that low fungal diversity in house dust is associated with childhood asthma development. Indoor Air. 2014;24(3):236-247.
Fishbein AB, Fuleihan RL. The hygiene hypothesis revisited: does exposure to infectious agents protect us from allergy? Curr Opin Pediatr. 2012;24(1):98-102.
Karvonen AM, Kirjavainen PV, Täubel M, et al. Indoor bacterial microbiota and development of asthma by 10.5 years of age. J Allergy Clin Immunol. 2019;144(5):1402-1410.
Sharpe RA, Thornton CR, Tyrrell J, et al. Variable risk of atopic disease due to indoor fungal exposure in NHANES 2005-2006. Clin Exp Allergy. 2015;45(10):1566-1578.
Tischer C, Weikl F, Probst AJ, et al. Urban dust microbiome: impact on later atopy and wheezing. Environ Health Perspect. 2016;124(12):1919-1923.
Adams RI, Miletto M, Lindow SE, et al. Airborne bacterial communities in residences: similarities and differences with fungi. PLoS One. 2014;9(3):e91283.
Fujimura KE, Johnson CC, Ownby DR, et al. Man's best friend? The effect of pet ownership on house dust microbial communities. J Allergy Clin Immunol. 2010;126(2):410-412.e3
Kembel SW, Jones E, Kline J, et al. Architectural design influences the diversity and structure of the built environment microbiome. The ISME J. 2012;6(8):1469-1479.
Kettleson EM, Adhikari A, Vesper S, et al. Key determinants of the fungal and bacterial microbiomes in homes. Environ Res. 2015;138:130-135.
Meadow JF, Altrichter AE, Kembel SW, et al. Indoor airborne bacterial communities are influenced by ventilation, occupancy, and outdoor air source. Indoor Air. 2014;24(1):41-48.
Dockx Y, Täubel M, Bijnens EM, et al. Residential green space can shape the indoor microbial environment. Environ Res. 2021;201:111543.
Adams RI, Miletto M, Taylor JW, et al. Dispersal in microbes: fungi in indoor air are dominated by outdoor air and show dispersal limitation at short distances. ISME J. 2013;7(7):1262-1273.
Amend AS, Seifert KA, Samson R, et al. Indoor fungal composition is geographically patterned and more diverse in temperate zones than in the tropics. Proc Natl Acad Sci USA. 2010;107(31):13748.
Mahnert A, Moissl-Eichinger C, Berg G. Microbiome interplay: plants alter microbial abundance and diversity within the built environment. Front Microbiol. 2015;6:887.
Berg G, Mahnert A, Moissl-Eichinger C. Beneficial effects of plant-associated microbes on indoor microbiomes and human health? Front Microbiol. 2014;5:15.
Lindow SE, Leveau JH. Phyllosphere microbiology. Curr Opin Biotechnol. 2002;13(3):238-243.
Lindow SE, Brandl MT. Microbiology of the phyllosphere. Appl Environ Microbiol. 2003;69(4):1875-1883.
Redford AJ, Bowers RM, Knight R, et al. The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ Microbiol. 2010;12(11):2885-2893.
Meyer KM, Leveau J. Microbiology of the phyllosphere: a playground for testing ecological concepts. Oecologia. 2012;168:621-629.
Vorholt JA. Microbial life in the phyllosphere. Nat Rev Microbiol. 2012;10(12):828-840.
Rastogi G, Coaker GL, Leveau JHJ. New insights into the structure and function of phyllosphere microbiota through high-throughput molecular approaches. FEMS Microbiol Lett. 2013;348(1):1-10.
Pegas PN, Alves CA, Nunes T, et al. Could houseplants improve indoor air quality in schools? J Toxicol Environ Health A. 2012;75(22-23):1371-1380.
Kim KJ, Kil MJ, Song JS, et al. Efficiency of volatile formaldehyde removal by indoor plants: contribution of aerial plant parts versus the root zone. J Amer Soc Hort Sci. 2008;133(4):521.
Sriprapat W, Suksabye P, Areephak S, et al. Uptake of toluene and ethylbenzene by plants: removal of volatile indoor air contaminants. Ecotoxicol Environ Saf. 2014;102:147-151.
Orwell RL, Wood RL, Tarran J, et al. Removal of benzene by the indoor plant/substrate microcosm and implications for air quality. Water Air Soil Pollut. 2004;157(1):193-207.
Fu X, Li Y, Meng Y, et al. Derived habitats of indoor microbes are associated with asthma symptoms in Chinese university dormitories. Environ Res. 2021;194:110501.
Fu XI, Li Y, Meng YI, et al. Associations between respiratory infections and bacterial microbiome in student dormitories in Northern China. Indoor Air. 2020;30(5):816-826.
Janssen BG, Madhloum N, Gyselaers W, et al. Cohort profile: the ENVIRonmental influence ON early AGEing (ENVIRONAGE): a birth cohort study. Int J Epidemiol. 2017;46(5):1386-1387m.
Adams RI, Miletto M, Taylor JW, et al. Dispersal in microbes: fungi in indoor air are dominated by outdoor air and show dispersal limitation at short distances. ISME J. 2013;7(7):1262-1273.
Hyvarinen A, Roponen M, Tiittanen P, et al. Dust sampling methods for endotoxin - an essential, but underestimated issue. Indoor Air. 2006;16(1):20-27.
Caporaso JG, Lauber CL, Walters WA, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA. 2011;108(Supplement_1):4516-4522.
Smith DP, Peay KG. Sequence depth, not PCR replication, improves ecological inference from next generation DNA sequencing. PLoS One. 2014;9(2):e90234.
Callahan BJ, McMurdie PJ, Rosen MJ, et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581-583.
Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335-336.
Colwell R. Biodiversity: concepts, patterns and measurements. In: Princeton Guide to Ecology. Princeton University Press; 2009:257-263.
Haugland RA, Varma M, Wymer LJ, et al. Quantitative PCR analysis of selected Aspergillus, Penicillium and Paecilomyces species. Syst Appl Microbiol. 2004;27(2):198-210.
Stevens V, Thijs S, Bongaerts E, et al. Ambient air pollution shapes bacterial and fungal ivy leaf communities. Microorganisms. 2021;9(10):2088.
Zhou F, Niu M, Zheng Y, et al. Impact of outdoor air on indoor airborne microbiome under hazy air pollution: a case study in winter Beijing. J Aerosol Sci. 2021;156:105798.
Janssen S, Dumont G, Fierens F, et al. Spatial interpolation of air pollution measurements using CORINE land cover data. Atmos Environ. 2008;42(20):4884-4903.
Lefebvre W, Degrawe B, Beckx C, et al. Presentation and evaluation of an integrated model chain to respond to traffic-and health-related policy questions. Environ Model Softw. 2013;40:160-170.
Maiheu B, Veldeman N, Viaene P, et al. Identifying the Best Available Large-Scale Concentration Maps for Air Quality in Belgium. Flemish Institute for Technological Research (VITO); 2013.
Maiheu B, Viaene P, De Rider K, et al. Identifying the Best Available Large-Scale Concentration Maps for Air Quality in Belgium. Study Commissioned by the Flemish Environment (MIRA) [in Dutch]; 2013, Belgium: Flemish Institute for Technological Research (VITO).
Dunn RR, Fierer N, Henley JB, et al. Home life: factors structuring the bacterial diversity found within and between homes. PLoS One. 2013;8(5):e64133.
R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; 2019.
Täubel M, Rintala H, Pitkäranta M, et al. The occupant as a source of house dust bacteria. J Allergy Clin Immunol. 2009;124:834-40.e47.
Barberán A, Dunn RR, Reich BJ, et al. The ecology of microscopic life in household dust. Proc R Soc B Biol Sci. 2015;282:20151139.
Pakarinen J, Hyvärinen A, Salkinoja-Salonen M, et al. Predominance of Gram-positive bacteria in house dust in the low-allergy risk Russian Karelia. Environ Microbiol. 2008;10:3317-3325.
Kirjavainen P, Hyytiäinen H, Täubel M. The environmental microbiota and asthma; 2019:216-239.
Kirjavainen PV, Karvonen AM, Adams RI, et al. Farm-like indoor microbiota in non-farm homes protects children from asthma development. Nat Med. 2019;25(7):1089-1095.
Madigan MT. Brock biology of microorganisms; 2012.
Wei X, Lyu S, Yu Y, et al. Phylloremediation of air pollutants: exploiting the potential of plant leaves and leaf-associated microbes. Front Plant Sci. 2017;8:1318.
Zhou S-Y-D, Li HU, Giles M, et al. Microbial flow within an air-phyllosphere-soil continuum. Front Microbiol. 2021;11:3325.
Dastogeer KMG, Tumpaa FH, Sultana A, Aktera MA, Chakraborty A. Plant microbiome-an account of the factors that shape community composition and diversity. Curr Plant Biology. 2020;23:100161.
Fitzpatrick CR, Copeland J, Wang PW, et al. Assembly and ecological function of the root microbiome across angiosperm plant species. Proc Natl Acad Sci USA. 2018;115(6):E1157.
Hyytiäinen H, Kirjavainen PV, Täubel M, et al. Microbial diversity in homes and the risk of allergic rhinitis and inhalant atopy in two European birth cohorts. Environ Res. 2021;196:110835.
Valkonen M, Wouters IM, Täubel M, et al. Bacterial exposures and associations with atopy and asthma in children. PLoS One. 2015;10(6):e0131594.
Flies EJ, Skelly C, Negi SS, et al. Biodiverse green spaces: a prescription for global urban health. Front Ecol Environ. 2017;15:510-516.
Liddicoat C, Sydnor H, Cando-Dumancela C, et al. Naturally-diverse airborne environmental microbial exposures modulate the gut microbiome and may provide anxiolytic benefits in mice. Sci Total Environ. 2020;701:134684.