Artificial Intelligence in Fracture Detection: A Systematic Review and Meta-Analysis.
Journal
Radiology
ISSN: 1527-1315
Titre abrégé: Radiology
Pays: United States
ID NLM: 0401260
Informations de publication
Date de publication:
07 2022
07 2022
Historique:
pubmed:
30
3
2022
medline:
24
6
2022
entrez:
29
3
2022
Statut:
ppublish
Résumé
Background Patients with fractures are a common emergency presentation and may be misdiagnosed at radiologic imaging. An increasing number of studies apply artificial intelligence (AI) techniques to fracture detection as an adjunct to clinician diagnosis. Purpose To perform a systematic review and meta-analysis comparing the diagnostic performance in fracture detection between AI and clinicians in peer-reviewed publications and the gray literature (ie, articles published on preprint repositories). Materials and Methods A search of multiple electronic databases between January 2018 and July 2020 (updated June 2021) was performed that included any primary research studies that developed and/or validated AI for the purposes of fracture detection at any imaging modality and excluded studies that evaluated image segmentation algorithms. Meta-analysis with a hierarchical model to calculate pooled sensitivity and specificity was used. Risk of bias was assessed by using a modified Prediction Model Study Risk of Bias Assessment Tool, or PROBAST, checklist. Results Included for analysis were 42 studies, with 115 contingency tables extracted from 32 studies (55 061 images). Thirty-seven studies identified fractures on radiographs and five studies identified fractures on CT images. For internal validation test sets, the pooled sensitivity was 92% (95% CI: 88, 93) for AI and 91% (95% CI: 85, 95) for clinicians, and the pooled specificity was 91% (95% CI: 88, 93) for AI and 92% (95% CI: 89, 92) for clinicians. For external validation test sets, the pooled sensitivity was 91% (95% CI: 84, 95) for AI and 94% (95% CI: 90, 96) for clinicians, and the pooled specificity was 91% (95% CI: 81, 95) for AI and 94% (95% CI: 91, 95) for clinicians. There were no statistically significant differences between clinician and AI performance. There were 22 of 42 (52%) studies that were judged to have high risk of bias. Meta-regression identified multiple sources of heterogeneity in the data, including risk of bias and fracture type. Conclusion Artificial intelligence (AI) and clinicians had comparable reported diagnostic performance in fracture detection, suggesting that AI technology holds promise as a diagnostic adjunct in future clinical practice. Clinical trial registration no. CRD42020186641 © RSNA, 2022
Identifiants
pubmed: 35348381
doi: 10.1148/radiol.211785
pmc: PMC9270679
doi:
Types de publication
Journal Article
Meta-Analysis
Systematic Review
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
50-62Subventions
Organisme : Department of Health
ID : NIHR300684
Pays : United Kingdom
Commentaires et corrections
Type : CommentIn
Références
BMC Emerg Med. 2006 Feb 16;6:4
pubmed: 16483365
Ann Intern Med. 2019 Jan 1;170(1):51-58
pubmed: 30596875
Korean J Radiol. 2020 Jul;21(7):891-899
pubmed: 32524789
Nature. 2020 Jan;577(7788):89-94
pubmed: 31894144
Jt Dis Relat Surg. 2020;31(2):175-183
pubmed: 32584712
Circulation. 2015 Jan 13;131(2):211-9
pubmed: 25561516
Clin Radiol. 2018 May;73(5):439-445
pubmed: 29269036
BMJ. 2020 Sep 9;370:m3210
pubmed: 32907797
Korean J Radiol. 2020 Jul;21(7):869-879
pubmed: 32524787
J Clin Epidemiol. 2005 Sep;58(9):882-93
pubmed: 16085191
Syst Rev. 2012 Nov 29;1:60
pubmed: 23194585
Res Synth Methods. 2017 Sep;8(3):290-302
pubmed: 28378395
Acta Orthop. 2020 Dec;91(6):699-704
pubmed: 32783544
J Med Imaging Radiat Oncol. 2019 Feb;63(1):27-32
pubmed: 30407743
Acta Radiol. 2006 Sep;47(7):710-7
pubmed: 16950710
JMIR Med Inform. 2020 Nov 27;8(11):e19416
pubmed: 33245279
Eur J Radiol. 2020 May;126:108925
pubmed: 32193036
Radiol Artif Intell. 2019 Jan 30;1(1):e180001
pubmed: 33937780
Radiol Artif Intell. 2019 Jan 30;1(1):e180015
pubmed: 33937781
Radiology. 2019 Nov;293(2):405-411
pubmed: 31526255
Lancet. 2019 Apr 20;393(10181):1577-1579
pubmed: 31007185
Trauma Surg Acute Care Open. 2021 Apr 07;6(1):e000705
pubmed: 33912689
Eur J Radiol. 2020 Sep;130:109188
pubmed: 32721827
Sci Rep. 2020 Nov 18;10(1):20031
pubmed: 33208824
Acta Orthop. 2019 Aug;90(4):394-400
pubmed: 30942136
J Digit Imaging. 2019 Aug;32(4):672-677
pubmed: 31001713
Acta Orthop. 2020 Apr;91(2):215-220
pubmed: 31928116
Eur J Trauma Emerg Surg. 2022 Feb;48(1):585-592
pubmed: 32862314
Skeletal Radiol. 2022 Feb;51(2):355-362
pubmed: 33611622
J Bone Miner Res. 2021 May;36(5):833-851
pubmed: 33751686
Skeletal Radiol. 2019 Feb;48(2):239-244
pubmed: 29955910
Bone. 2016 Jun;87:19-26
pubmed: 26968752
Can Assoc Radiol J. 2019 Nov;70(4):344-353
pubmed: 31522841
Nat Commun. 2021 Feb 16;12(1):1066
pubmed: 33594071
Acta Orthop. 2018 Aug;89(4):468-473
pubmed: 29577791
Radiology. 2021 Jul;300(1):120-129
pubmed: 33944629
J Digit Imaging. 2020 Feb;33(1):204-210
pubmed: 31062114
Clin Orthop Relat Res. 2019 Nov;477(11):2482-2491
pubmed: 31283727
Nat Med. 2020 Jun;26(6):807-808
pubmed: 32514173
Int J Surg. 2021 Oct;94:106133
pubmed: 34597822
JAMA Netw Open. 2021 May 3;4(5):e216096
pubmed: 33956133
PLoS One. 2021 Jan 28;16(1):e0245992
pubmed: 33507982
Sci Rep. 2021 Mar 16;11(1):6006
pubmed: 33727668
BMJ. 2020 Sep 9;370:m3164
pubmed: 32909959
Radiol Artif Intell. 2020 Mar 25;2(2):e190023
pubmed: 33937815
Clin Radiol. 2020 Mar;75(3):237.e1-237.e9
pubmed: 31787211
PLoS One. 2020 Dec 21;15(12):e0244291
pubmed: 33347485
Proc Natl Acad Sci U S A. 2018 Nov 6;115(45):11591-11596
pubmed: 30348771
J Am Coll Radiol. 2019 Apr;16(4 Pt A):508-512
pubmed: 30745040
J Bone Miner Res. 2014 Mar;29(3):581-9
pubmed: 23959594
Clin Orthop Relat Res. 2020 Nov;478(11):2653-2659
pubmed: 32452927
Int J Comput Assist Radiol Surg. 2020 May;15(5):847-857
pubmed: 32335786
Invest Radiol. 2020 Feb;55(2):101-110
pubmed: 31725064
Clin Radiol. 2000 Nov;55(11):861-5
pubmed: 11069742
Clin Radiol. 2020 Sep;75(9):713.e17-713.e28
pubmed: 32591230
Eur Radiol. 2019 Oct;29(10):5469-5477
pubmed: 30937588
J Am Coll Radiol. 2019 Jan;16(1):121-123
pubmed: 30236858
Comput Methods Programs Biomed. 2019 Apr;171:27-37
pubmed: 30902248
J Digit Imaging. 2020 Oct;33(5):1209-1217
pubmed: 32583277