A Combined Proteomics and Metabolomics Profiling to Investigate the Genetic Heterogeneity of Autistic Children.
Autism spectrum disorder
Biomarker
Heterogeneity
Metabolomics
Peripheral blood mononuclear cells
Plasma
Proteomics
Journal
Molecular neurobiology
ISSN: 1559-1182
Titre abrégé: Mol Neurobiol
Pays: United States
ID NLM: 8900963
Informations de publication
Date de publication:
Jun 2022
Jun 2022
Historique:
received:
08
10
2021
accepted:
16
03
2022
pubmed:
30
3
2022
medline:
1
6
2022
entrez:
29
3
2022
Statut:
ppublish
Résumé
Autism spectrum disorder (ASD) has become one of the most common neurological developmental disorders in children. However, the study of ASD diagnostic markers faces significant challenges due to the existence of heterogeneity. In this study, genetic testing was performed on children who were clinically diagnosed with ASD. Children with ASD susceptibility genes and healthy controls were studied. The proteomics of plasma and peripheral blood mononuclear cells (PBMCs) as well as plasma metabolomics were carried out. The results showed that although there was genetic heterogeneity in children with ASD, the differentially expressed proteins (DEPs) in plasma, peripheral blood mononuclear cells, and differential metabolites in plasma could still effectively distinguish autistic children from controls. The mechanism associated with them focuses on several common and previously reported mechanisms of ASD. The biomarkers for ASD diagnosis could be found by taking differentially expressed proteins and differential metabolites into consideration. Integrating omics data, glycerophospholipid metabolism and N-glycan biosynthesis might play a critical role in the pathogenesis of ASD.
Identifiants
pubmed: 35348996
doi: 10.1007/s12035-022-02801-x
pii: 10.1007/s12035-022-02801-x
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
3529-3545Subventions
Organisme : National Natural Science Foundation of China
ID : No. 31870825
Organisme : Shenzhen Bureau of Science, Technology, and Information
ID : No. JCYJ20170412110026229
Organisme : Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions
ID : No. 2021SHIBS0003
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Shen L, Liu X, Zhang H et al (2020) Biomarkers in autism spectrum disorders: Current progress. Clin Chim Acta Int J Clin Chem 502:41–54. https://doi.org/10.1016/j.cca.2019.12.009
doi: 10.1016/j.cca.2019.12.009
El-Fishawy P, State MW (2010) The Genetics of Autism: Key Issues, Recent Findings and Clinical Implications. Psychiatr Clin North Am 33:83–105. https://doi.org/10.1016/j.psc.2009.12.002
doi: 10.1016/j.psc.2009.12.002
pubmed: 20159341
pmcid: 2841771
Huguet G, Ey E, Bourgeron T (2013) The genetic landscapes of autism spectrum disorders. Annu Rev Genomics Hum Genet 14:191–213. https://doi.org/10.1146/annurev-genom-091212-153431
doi: 10.1146/annurev-genom-091212-153431
pubmed: 23875794
Eldevik S, Hastings RP, Hughes JC et al (2009) Meta-analysis of Early Intensive Behavioral Intervention for children with autism. J Clin Child Adolesc Psychol Off J Soc Clin Child Adolesc Psychol Am Psychol Assoc Div 53(38):439–450. https://doi.org/10.1080/15374410902851739
doi: 10.1080/15374410902851739
Chen L, Shi X-J, Liu H et al (2021) Oxidative stress marker aberrations in children with autism spectrum disorder: a systematic review and meta-analysis of 87 studies (N = 9109). Transl Psychiatry 11:15. https://doi.org/10.1038/s41398-020-01135-3
doi: 10.1038/s41398-020-01135-3
pubmed: 33414386
pmcid: 7791110
Shen L, Zhao Y, Zhang H et al (2019) Advances in Biomarker Studies in Autism Spectrum Disorders. Adv Exp Med Biol 1118:207–233. https://doi.org/10.1007/978-3-030-05542-4_11
doi: 10.1007/978-3-030-05542-4_11
pubmed: 30747425
Ristori MV, Mortera SL, Marzano V et al (2020) Proteomics and metabolomics approaches towards a functional insight onto autism spectrum disorders: phenotype stratification and biomarker discovery. Int J Mol Sci 21:6274. https://doi.org/10.3390/ijms21176274
Park DI (2020) Genomics, transcriptomics, proteomics and big data analysis in the discovery of new diagnostic markers and targets for therapy development. Prog Mol Biol Transl Sci 173:61–90. https://doi.org/10.1016/bs.pmbts.2020.04.017
doi: 10.1016/bs.pmbts.2020.04.017
pubmed: 32711818
American Psychiatric Association American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders: DSM-5, 5th edn. American Psychiatric Association, Washington, D.C.
doi: 10.1176/appi.books.9780890425596
Liu H, Zimmerman AW, Singh K et al (2020) Biomarker Exploration in Human Peripheral Blood Mononuclear Cells for Monitoring Sulforaphane Treatment Responses in Autism Spectrum Disorder. Sci Rep 10:5822. https://doi.org/10.1038/s41598-020-62714-4
doi: 10.1038/s41598-020-62714-4
pubmed: 32242086
pmcid: 7118069
Shen L, Feng C, Zhang K et al (2019) Proteomics Study of Peripheral Blood Mononuclear Cells (PBMCs) in Autistic Children. Front Cell Neurosci 13:105. https://doi.org/10.3389/fncel.2019.00105
doi: 10.3389/fncel.2019.00105
pubmed: 30941018
pmcid: 6433831
Frye RE, DeLaTorre R, Taylor H et al (2013) Redox metabolism abnormalities in autistic children associated with mitochondrial disease. Transl Psychiatry 3:e273–e273. https://doi.org/10.1038/tp.2013.51
doi: 10.1038/tp.2013.51
pubmed: 23778583
pmcid: 3693408
Masi A, DeMayo MM, Glozier N, Guastella AJ (2017) An Overview of Autism Spectrum Disorder, Heterogeneity and Treatment Options. Neurosci Bull 33:183–193. https://doi.org/10.1007/s12264-017-0100-y
doi: 10.1007/s12264-017-0100-y
pubmed: 28213805
pmcid: 5360849
Nuttle X, Itsara A, Shendure J, Eichler EE (2014) Resolving genomic disorder–associated breakpoints within segmental DNA duplications using massively parallel sequencing. Nat Protoc 9:1496–1513. https://doi.org/10.1038/nprot.2014.096
doi: 10.1038/nprot.2014.096
pubmed: 24874815
pmcid: 4114152
Shen L, Zhang K, Feng C et al (2018) iTRAQ-Based Proteomic Analysis Reveals Protein Profile in Plasma from Children with Autism. PROTEOMICS - Clin Appl 12:1700085. https://doi.org/10.1002/prca.201700085
doi: 10.1002/prca.201700085
Du X, Shi Q, Zhao Y et al (2021) Se-Methylselenocysteine (SMC) Improves Cognitive Deficits by Attenuating Synaptic and Metabolic Abnormalities in Alzheimer’s Mice Model: A Proteomic Study. ACS Chem Neurosci 12:1112–1132. https://doi.org/10.1021/acschemneuro.0c00549
doi: 10.1021/acschemneuro.0c00549
pubmed: 33689275
Wiśniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6:359–362. https://doi.org/10.1038/nmeth.1322
doi: 10.1038/nmeth.1322
pubmed: 19377485
OMICSBEAN website, http://www.omicsbean.cn . Accessed 20 September 2021
Shen L, Yang A, Chen X et al (2021) Proteomic Profiling of Cerebrum Mitochondria, Myelin Sheath, and Synaptosome Revealed Mitochondrial Damage and Synaptic Impairments in Association with 3 × Tg-AD Mice Model. Cell Mol Neurobiol. https://doi.org/10.1007/s10571-021-01052-z
doi: 10.1007/s10571-021-01052-z
pubmed: 33712887
MetaboAnalyst 4.0, https://www.metaboanalyst.ca/ . Accessed 20 September 2021
Search Tool for the Retrieval of Interacting Genes/Proteins, http://string-db.org/ . Accessed 20 September 2021
Karnovsky A, Weymouth T, Hull T et al (2012) Metscape 2 bioinformatics tool for the analysis and visualization of metabolomics and gene expression data. Bioinformatics 28:373–380. https://doi.org/10.1093/bioinformatics/btr661
doi: 10.1093/bioinformatics/btr661
pubmed: 22135418
Bagnell A (2019) The Role of ASH1L during human neurodevelopment. Senior Theses 273:1–53
Begemann A, Acuña MA, Zweier M et al (2019) Further corroboration of distinct functional features in SCN2A variants causing intellectual disability or epileptic phenotypes. Mol Med Camb Mass 25:6. https://doi.org/10.1186/s10020-019-0073-6
doi: 10.1186/s10020-019-0073-6
pubmed: 30813884
pmcid: 6391808
Cheng H, Dharmadhikari AV, Varland S et al (2018) Truncating Variants in NAA15 Are Associated with Variable Levels of Intellectual Disability, Autism Spectrum Disorder, and Congenital Anomalies. Am J Hum Genet 102:985–994. https://doi.org/10.1016/j.ajhg.2018.03.004
doi: 10.1016/j.ajhg.2018.03.004
pubmed: 29656860
pmcid: 5986698
Gazzellone MJ, Zhou X, Lionel AC et al (2014) Copy number variation in Han Chinese individuals with autism spectrum disorder. J Neurodev Disord 6:34. https://doi.org/10.1186/1866-1955-6-34
doi: 10.1186/1866-1955-6-34
pubmed: 25170348
pmcid: 4147384
Garcia-Forn M, Boitnott A, Akpinar Z, De Rubeis S (2020) Linking autism risk genes to disruption of cortical development. Cells 9:2500. https://doi.org/10.3390/cells9112500
Wang X, Posey JE, Rosenfeld JA et al (2018) Phenotypic expansion in DDX3X - a common cause of intellectual disability in females. Ann Clin Transl Neurol 5:1277–1285. https://doi.org/10.1002/acn3.622
doi: 10.1002/acn3.622
pubmed: 30349862
pmcid: 6186933
Iossifov I, O’Roak BJ, Sanders SJ et al (2014) The contribution of de novo coding mutations to autism spectrum disorder. Nature 515:216–221. https://doi.org/10.1038/nature13908
doi: 10.1038/nature13908
pubmed: 25363768
pmcid: 4313871
Momeni N, Bergquist J, Brudin L et al (2012) A novel blood-based biomarker for detection of autism spectrum disorders. Transl Psychiatry 2:e91–e91. https://doi.org/10.1038/tp.2012.19
doi: 10.1038/tp.2012.19
pubmed: 22832856
pmcid: 3309533
Corbett BA, Kantor AB, Schulman H et al (2007) A proteomic study of serum from children with autism showing differential expression of apolipoproteins and complement proteins. Mol Psychiatry 12:292–306. https://doi.org/10.1038/sj.mp.4001943
doi: 10.1038/sj.mp.4001943
pubmed: 17189958
Warren RP (1994) Decreased Plasma Concentrations of the C4B Complement Protein in Autism. Arch Pediatr Adolesc Med 148:180. https://doi.org/10.1001/archpedi.1994.02170020066011
doi: 10.1001/archpedi.1994.02170020066011
pubmed: 8118537
Hewitson L, Mathews JA, Devlin M et al (2021) Blood biomarker discovery for autism spectrum disorder: A proteomic analysis. PloS One 16:e0246581. https://doi.org/10.1371/journal.pone.0246581
doi: 10.1371/journal.pone.0246581
pubmed: 33626076
pmcid: 7904196
Feng C, Chen Y, Pan J et al (2017) Redox proteomic identification of carbonylated proteins in autism plasma: insight into oxidative stress and its related biomarkers in autism. Clin Proteomics 14:1–8. https://doi.org/10.1186/s12014-017-9138-0
Qin Y, Chen Y, Yang J et al (2017) Serum glycopattern and Maackia amurensis lectin-II binding glycoproteins in autism spectrum disorder. Sci Rep 7:46041. https://doi.org/10.1038/srep46041
doi: 10.1038/srep46041
pubmed: 28485374
pmcid: 5423032
Magdalon J, Mansur F, Silva Teles E, AL, et al (2020) Complement System in Brain Architecture and Neurodevelopmental Disorders. Front Neurosci 14:23. https://doi.org/10.3389/fnins.2020.00023
doi: 10.3389/fnins.2020.00023
pubmed: 32116493
pmcid: 7015047
Jun Tan CF (2015) C1q as a regulator of brain development: implications for autism spectrum disorders. Brain Disord Ther. https://doi.org/10.4172/2168-975X.1000152
Stephan AH, Barres BA, Stevens B (2012) The complement system: an unexpected role in synaptic pruning during development and disease. Annu Rev Neurosci 35:369–389. https://doi.org/10.1146/annurev-neuro-061010-113810
doi: 10.1146/annurev-neuro-061010-113810
pubmed: 22715882
Fagan K, Crider A, Ahmed AO, Pillai A (2017) Complement C3 Expression Is Decreased in Autism Spectrum Disorder Subjects and Contributes to Behavioral Deficits in Rodents. Mol Neuropsychiatry 3:19–27. https://doi.org/10.1159/000465523
doi: 10.1159/000465523
pubmed: 28879198
pmcid: 5582423
Tang G, Gudsnuk K, Kuo S-H et al (2014) Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron 83:1131–1143. https://doi.org/10.1016/j.neuron.2014.07.040
doi: 10.1016/j.neuron.2014.07.040
pubmed: 25155956
pmcid: 4159743
Mansur F, Teles E, Silva AL, Gomes AKS et al (2021) Complement C4 is reduced in iPSC-derived astrocytes of autism spectrum disorder subjects. Int J Mol Sci 22:7579. https://doi.org/10.3390/ijms22147579
Novellino F, Saccà V, Donato A et al (2020) Innate immunity: a common denominator between neurodegenerative and neuropsychiatric diseases. Int J Mol Sci 21:1115. https://doi.org/10.3390/ijms21031115
Gładysz D, Krzywdzińska A, Hozyasz KK (2018) Immune Abnormalities in Autism Spectrum Disorder-Could They Hold Promise for Causative Treatment? Mol Neurobiol 55:6387–6435. https://doi.org/10.1007/s12035-017-0822-x
doi: 10.1007/s12035-017-0822-x
pubmed: 29307081
pmcid: 6061181
Sochocka M, Diniz BS, Leszek J (2017) Inflammatory Response in the CNS: Friend or Foe? Mol Neurobiol 54:8071–8089. https://doi.org/10.1007/s12035-016-0297-1
doi: 10.1007/s12035-016-0297-1
pubmed: 27889895
Griciuc A, Tanzi RE (2021) The role of innate immune genes in Alzheimer’s disease. Curr Opin Neurol 34:228–236. https://doi.org/10.1097/WCO.0000000000000911
doi: 10.1097/WCO.0000000000000911
pubmed: 33560670
pmcid: 7954128
Druart M, Le Magueresse C (2019) Emerging Roles of Complement in Psychiatric Disorders. Front Psych 10:573. https://doi.org/10.3389/fpsyt.2019.00573
doi: 10.3389/fpsyt.2019.00573
Sekar A, Bialas AR, de Rivera H et al (2016) Schizophrenia risk from complex variation of complement component 4. Nature 530:177–183. https://doi.org/10.1038/nature16549
doi: 10.1038/nature16549
pubmed: 26814963
pmcid: 4752392
Krance SH, Wu C-Y, Zou Y et al (2021) The complement cascade in Alzheimer’s disease: a systematic review and meta-analysis. Mol Psychiatry 26:5532–5541. https://doi.org/10.1038/s41380-019-0536-8
doi: 10.1038/s41380-019-0536-8
pubmed: 31628417
Hong S, Beja-Glasser VF, Nfonoyim BM et al (2016) Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352:712–716. https://doi.org/10.1126/science.aad8373
doi: 10.1126/science.aad8373
pubmed: 27033548
pmcid: 5094372
Gomez-Arboledas A, Acharya MM, Tenner AJ (2021) The Role of Complement in Synaptic Pruning and Neurodegeneration. ImmunoTargets Ther 10:373–386. https://doi.org/10.2147/ITT.S305420
doi: 10.2147/ITT.S305420
pubmed: 34595138
pmcid: 8478425
Meltzer A, Van de Water J (2017) The Role of the Immune System in Autism Spectrum Disorder. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 42:284–298. https://doi.org/10.1038/npp.2016.158
doi: 10.1038/npp.2016.158
Zimmerman AW, Jyonouchi H, Comi AM et al (2005) Cerebrospinal fluid and serum markers of inflammation in autism. Pediatr Neurol 33:195–201. https://doi.org/10.1016/j.pediatrneurol.2005.03.014
doi: 10.1016/j.pediatrneurol.2005.03.014
pubmed: 16139734
Molloy CA, Morrow AL, Meinzen-Derr J et al (2006) Elevated cytokine levels in children with autism spectrum disorder. J Neuroimmunol 172:198–205. https://doi.org/10.1016/j.jneuroim.2005.11.007
doi: 10.1016/j.jneuroim.2005.11.007
pubmed: 16360218
Frye RE (2020) Mitochondrial Dysfunction in Autism Spectrum Disorder: Unique Abnormalities and Targeted Treatments. Semin Pediatr Neurol 35:100829. https://doi.org/10.1016/j.spen.2020.100829
doi: 10.1016/j.spen.2020.100829
pubmed: 32892956
Rossignol DA, Frye RE (2014) Evidence linking oxidative stress, mitochondrial dysfunction, and inflammation in the brain of individuals with autism. Front Physiol 5:150. https://doi.org/10.3389/fphys.2014.00150
doi: 10.3389/fphys.2014.00150
pubmed: 24795645
pmcid: 4001006
Bjørklund G, Meguid NA, El-Bana MA et al (2020) Oxidative Stress in Autism Spectrum Disorder. Mol Neurobiol 57:2314–2332. https://doi.org/10.1007/s12035-019-01742-2
doi: 10.1007/s12035-019-01742-2
pubmed: 32026227
Liu X, Lin J, Zhang H et al (2022) Oxidative Stress in Autism Spectrum Disorder—Current Progress of Mechanisms and Biomarkers. Front Psych 13:813304. https://doi.org/10.3389/fpsyt.2022.813304
doi: 10.3389/fpsyt.2022.813304
Rose S, Bennuri SC, Wynne R et al (2017) Mitochondrial and redox abnormalities in autism lymphoblastoid cells: a sibling control study. FASEB J 31:904–909. https://doi.org/10.1096/fj.201601004R
doi: 10.1096/fj.201601004R
pubmed: 27864377
Bennuri SC, Rose S, Frye RE (2019) Mitochondrial Dysfunction Is Inducible in Lymphoblastoid Cell Lines From Children With Autism and May Involve the TORC1 Pathway. Front Psychiatry 10:269. https://doi.org/10.3389/fpsyt.2019.00269
doi: 10.3389/fpsyt.2019.00269
pubmed: 31133888
pmcid: 6514096
Mead J, Ashwood P (2015) Evidence supporting an altered immune response in ASD. Immunol Lett 163:49–55. https://doi.org/10.1016/j.imlet.2014.11.006
doi: 10.1016/j.imlet.2014.11.006
pubmed: 25448709
Lin J, Zhang K, Cao X et al (2022) iTRAQ-Based Proteomics Analysis of Rat Cerebral Cortex Exposed to Valproic Acid before Delivery. ACS Chem Neurosci 13:648–663. https://doi.org/10.1021/acschemneuro.1c00800
doi: 10.1021/acschemneuro.1c00800
pubmed: 35138800
Liao X, Yang J, Wang H, Li Y (2020) Microglia mediated neuroinflammation in autism spectrum disorder. J Psychiatr Res 130:167–176. https://doi.org/10.1016/j.jpsychires.2020.07.013
doi: 10.1016/j.jpsychires.2020.07.013
pubmed: 32823050
Voineagu I, Wang X, Johnston P et al (2011) Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 474:380–384. https://doi.org/10.1038/nature10110
doi: 10.1038/nature10110
pubmed: 21614001
pmcid: 3607626
Carrasco M, Salazar C, Tiznado W, Ruiz LM (2019) Alterations of Mitochondrial Biology in the Oral Mucosa of Chilean Children with Autism Spectrum Disorder (ASD). Cells 8:367. https://doi.org/10.3390/cells8040367
doi: 10.3390/cells8040367
pmcid: 6523430
Chauhan A, Gu F, Essa MM et al (2011) Brain region-specific deficit in mitochondrial electron transport chain complexes in children with autism. J Neurochem 117:209–220. https://doi.org/10.1111/j.1471-4159.2011.07189.x
doi: 10.1111/j.1471-4159.2011.07189.x
pubmed: 21250997
pmcid: 4839269
Tang G, Gutierrez Rios P, Kuo S-H et al (2013) Mitochondrial abnormalities in temporal lobe of autistic brain. Neurobiol Dis 54:349–361. https://doi.org/10.1016/j.nbd.2013.01.006
doi: 10.1016/j.nbd.2013.01.006
pubmed: 23333625
pmcid: 3959772
Martínez G, Khatiwada S, Costa-Mattioli M, Hetz C (2018) ER Proteostasis Control of Neuronal Physiology and Synaptic Function. Trends Neurosci 41:610–624. https://doi.org/10.1016/j.tins.2018.05.009
doi: 10.1016/j.tins.2018.05.009
pubmed: 29945734
pmcid: 7268632
Takasugi N, Hiraoka H, Nakahara K et al (2019) The emerging role of electrophiles as a key regulator for endoplasmic reticulum (ER) stress. Int J Mol Sci 20:1783. https://doi.org/10.3390/ijms20071783
Main PAE, Thomas P, Esterman A, Fenech MF (2013) Necrosis is increased in lymphoblastoid cell lines from children with autism compared with their non-autistic siblings under conditions of oxidative and nitrosative stress. Mutagenesis 28:475–484. https://doi.org/10.1093/mutage/get025
doi: 10.1093/mutage/get025
pubmed: 23766106
pmcid: 3681539
Dong D, Zielke HR, Yeh D, Yang P (2018) Cellular stress and apoptosis contribute to the pathogenesis of autism spectrum disorder: The role of cellular stress and apoptosis in autism. Autism Res 11:1076–1090. https://doi.org/10.1002/aur.1966
doi: 10.1002/aur.1966
pubmed: 29761862
pmcid: 6107407
Crider A, Ahmed AO, Pillai A (2017) Altered Expression of Endoplasmic Reticulum Stress-Related Genes in the Middle Frontal Cortex of Subjects with Autism Spectrum Disorder. Mol Neuropsych 3:85–91. https://doi.org/10.1159/000477212
doi: 10.1159/000477212
Kawada K, Iekumo T, Saito R et al (2014) Aberrant neuronal differentiation and inhibition of dendrite outgrowth resulting from endoplasmic reticulum stress. J Neurosci Res 92:1122–1133. https://doi.org/10.1002/jnr.23389
doi: 10.1002/jnr.23389
pubmed: 24723324
pmcid: 4320781
Lottes EN, Cox DN (2020) Homeostatic roles of the proteostasis network in dendrites. Front Cell Neurosci 14:264. https://doi.org/10.3389/fncel.2020.00264
doi: 10.3389/fncel.2020.00264
pubmed: 33013325
pmcid: 7461941
Hamilton AM, Zito K (2013) Breaking it down: the ubiquitin proteasome system in neuronal morphogenesis. Neural Plast 2013:196848. https://doi.org/10.1155/2013/196848
doi: 10.1155/2013/196848
pubmed: 23476809
pmcid: 3586504
Zhang-James Y, Vaudel M, Mjaavatten O et al (2019) Effect of disease-associated SLC9A9 mutations on protein-protein interaction networks: implications for molecular mechanisms for ADHD and autism. Atten Deficit Hyperact Disord 11:91–105. https://doi.org/10.1007/s12402-018-0281-x
doi: 10.1007/s12402-018-0281-x
Guo H, Li Y, Shen L et al (2019) Disruptive variants of CSDE1 associate with autism and interfere with neuronal development and synaptic transmission. Sci Adv 5:eaax2166. https://doi.org/10.1126/sciadv.aax2166
doi: 10.1126/sciadv.aax2166
pubmed: 31579823
pmcid: 6760934
Sergeeva OA, Chen B, Haase-Pettingell C et al (2013) Human CCT4 and CCT5 chaperonin subunits expressed in Escherichia coli form biologically active homo-oligomers. J Biol Chem 288:17734–17744. https://doi.org/10.1074/jbc.M112.443929
doi: 10.1074/jbc.M112.443929
pubmed: 23612981
pmcid: 3682573
Shinohe A, Hashimoto K, Nakamura K et al (2006) Increased serum levels of glutamate in adult patients with autism. Prog Neuropsychopharmacol Biol Psych 30:1472–1477. https://doi.org/10.1016/j.pnpbp.2006.06.013
doi: 10.1016/j.pnpbp.2006.06.013
Shimmura C, Suda S, Tsuchiya KJ et al (2011) Alteration of plasma glutamate and glutamine levels in children with high-functioning autism. PloS One 6:e25340. https://doi.org/10.1371/journal.pone.0025340
doi: 10.1371/journal.pone.0025340
pubmed: 21998651
pmcid: 3187770
Delaye J-B, Patin F, Lagrue E et al (2018) Post hoc analysis of plasma amino acid profiles: towards a specific pattern in autism spectrum disorder and intellectual disability. Ann Clin Biochem Int J Lab Med 55:543–552. https://doi.org/10.1177/0004563218760351
doi: 10.1177/0004563218760351
Smith AM, King JJ, West PR et al (2018) Amino Acid Dysregulation Metabotypes: Potential Biomarkers for Diagnosis and Individualized Treatment for Subtypes of Autism Spectrum Disorder. Biol Psychiatry. https://doi.org/10.1016/j.biopsych.2018.08.016
doi: 10.1016/j.biopsych.2018.08.016
pubmed: 30679032
pmcid: 6534468
Al-Otaish H, Al-Ayadhi L, Bjørklund G et al (2018) Relationship between absolute and relative ratios of glutamate, glutamine and GABA and severity of autism spectrum disorder. Metab Brain Dis 33:843–854. https://doi.org/10.1007/s11011-018-0186-6
doi: 10.1007/s11011-018-0186-6
pubmed: 29397522
Zheng Z, Zhu T, Qu Y, Mu D (2016) Blood Glutamate Levels in Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. PloS One 11:e0158688. https://doi.org/10.1371/journal.pone.0158688
doi: 10.1371/journal.pone.0158688
pubmed: 27390857
pmcid: 4938426
Horder J, Petrinovic MM, Mendez MA et al (2018) Glutamate and GABA in autism spectrum disorder-a translational magnetic resonance spectroscopy study in man and rodent models. Transl Psychiatry 8:106. https://doi.org/10.1038/s41398-018-0155-1
doi: 10.1038/s41398-018-0155-1
pubmed: 29802263
pmcid: 5970172
Tebartz van Elst L, Maier S, Fangmeier T et al (2014) Disturbed cingulate glutamate metabolism in adults with high-functioning autism spectrum disorder: evidence in support of the excitatory/inhibitory imbalance hypothesis. Mol Psychiatry 19:1314–1325. https://doi.org/10.1038/mp.2014.62
doi: 10.1038/mp.2014.62
pubmed: 25048006
Wang M, Wan J, Rong H et al (2019) Alterations in gut glutamate metabolism associated with changes in gut microbiota composition in children with autism spectrum disorder. mSystems 4:e00321-18. https://doi.org/10.1128/mSystems.00321-18
Kang D-W, Ilhan ZE, Isern NG et al (2018) Differences in fecal microbial metabolites and microbiota of children with autism spectrum disorders. Anaerobe 49:121–131. https://doi.org/10.1016/j.anaerobe.2017.12.007
doi: 10.1016/j.anaerobe.2017.12.007
pubmed: 29274915
Doroftei B, Ilie O-D, Cojocariu R-O et al (2020) Minireview exploring the biological cycle of vitamin B3 and its influence on oxidative stress: further molecular and clinical aspects. Mol Basel Switz 25:3323. https://doi.org/10.3390/molecules25153323
Kurochkin I, Khrameeva E, Tkachev A et al (2019) Metabolome signature of autism in the human prefrontal cortex. Commun Biol 2:234. https://doi.org/10.1038/s42003-019-0485-4
doi: 10.1038/s42003-019-0485-4
pubmed: 31263778
pmcid: 6588695
Yap IKS, Angley M, Veselkov KA et al (2010) Urinary Metabolic Phenotyping Differentiates Children with Autism from Their Unaffected Siblings and Age-Matched Controls. J Proteome Res 9:2996–3004. https://doi.org/10.1021/pr901188e
doi: 10.1021/pr901188e
pubmed: 20337404
Kang D-W, Adams JB, Vargason T et al (2020) Distinct fecal and plasma metabolites in children with autism spectrum disorders and their modulation after microbiota transfer therapy. mSphere 5:e00314-20. https://doi.org/10.1128/mSphere.00314-20
doi: 10.1128/mSphere.00314-20
pubmed: 33087514
pmcid: 7580952
Gao K, Mu C-L, Farzi A, Zhu W-Y (2020) Tryptophan Metabolism: A Link Between the Gut Microbiota and Brain. Adv Nutr Bethesda Md 11:709–723. https://doi.org/10.1093/advances/nmz127
doi: 10.1093/advances/nmz127
De Angelis M, Piccolo M, Vannini L et al (2013) Fecal Microbiota and Metabolome of Children with Autism and Pervasive Developmental Disorder Not Otherwise Specified. PLoS ONE 8:e76993. https://doi.org/10.1371/journal.pone.0076993
doi: 10.1371/journal.pone.0076993
pubmed: 24130822
pmcid: 3793965
Xiao L, Yan J, Yang T et al (2021) Fecal microbiome transplantation from children with autism spectrum disorder modulates tryptophan and serotonergic synapse metabolism and induces altered behaviors in germ-free mice. mSystems 6:e01343-20. https://doi.org/10.1128/mSystems.01343-20
doi: 10.1128/mSystems.01343-20
pubmed: 33824200
pmcid: 8547010
Belardo A, Gevi F, Zolla L (2019) The concomitant lower concentrations of vitamins B6, B9 and B12 may cause methylation deficiency in autistic children. J Nutr Biochem 70:38–46. https://doi.org/10.1016/j.jnutbio.2019.04.004
doi: 10.1016/j.jnutbio.2019.04.004
pubmed: 31151052
Barnhill K, Gutierrez A, Ghossainy M et al (2018) Dietary status and nutrient intake of children with autism spectrum disorder: A case-control study. Res Autism Spectr Disord 50:51–59. https://doi.org/10.1016/j.rasd.2018.03.002
doi: 10.1016/j.rasd.2018.03.002
Srikantha P, Mohajeri MH (2019) The possible role of the microbiota-gut-brain-axis in autism spectrum disorder. Int J Mol Sci 20:2115. https://doi.org/10.3390/ijms20092115
Hussain G, Wang J, Rasul A et al (2019) Role of cholesterol and sphingolipids in brain development and neurological diseases. Lipids Health Dis 18:26. https://doi.org/10.1186/s12944-019-0965-z
doi: 10.1186/s12944-019-0965-z
pubmed: 30683111
pmcid: 6347843
Wang H, Liang S, Wang M et al (2016) Potential serum biomarkers from a metabolomics study of autism. J Psychiatry Neurosci 41:27–37. https://doi.org/10.1503/jpn.140009
doi: 10.1503/jpn.140009
pubmed: 26395811
pmcid: 4688025
Cappuccio G, Donti T, Pinelli M et al (2019) Sphingolipid metabolism perturbations in Rett syndrome. Metabolites 9:221. https://doi.org/10.3390/metabo9100221
Needham BD, Adame MD, Serena G et al (2021) Plasma and Fecal Metabolite Profiles in Autism Spectrum Disorder. Biol Psychiatry 89:451–462. https://doi.org/10.1016/j.biopsych.2020.09.025
doi: 10.1016/j.biopsych.2020.09.025
pubmed: 33342544
Dwyer CA, Esko JD (2016) Glycan susceptibility factors in autism spectrum disorders. Mol Aspects Med 51:104–114. https://doi.org/10.1016/j.mam.2016.07.001
doi: 10.1016/j.mam.2016.07.001
pubmed: 27418189
pmcid: 5556687