Integrin-Linked Kinase Reduces H3K9 Trimethylation to Enhance Herpes Simplex Virus 1 Replication.

SUV39H1 histone methyltransferase TRIM28/KAP1 herpes simplex virus 1 (HSV-1) integrin-linked kinase (ILK) trimethylation of histone H3 on lsyine 9 (H3K9me3)

Journal

Frontiers in cellular and infection microbiology
ISSN: 2235-2988
Titre abrégé: Front Cell Infect Microbiol
Pays: Switzerland
ID NLM: 101585359

Informations de publication

Date de publication:
2022
Historique:
received: 13 11 2021
accepted: 14 02 2022
entrez: 30 3 2022
pubmed: 31 3 2022
medline: 5 4 2022
Statut: epublish

Résumé

Histone modifications control the lytic gene expression of herpes simplex virus 1 (HSV-1). The heterochromatin mark, trimethylation of histone H3 on lysine (K) 9 (H3K9me3), is detected on HSV-1 genomes at early phases of infection to repress viral gene transcription. However, the components and mechanisms involved in the process are mostly unknown. Integrin-linked kinase (ILK) is activated by PI3K to phosphorylate Akt and promote several RNA virus infections. Akt has been shown to enhance HSV-1 infection, suggesting a pro-viral role of ILK in HSV-1 infection that has not been addressed before. Here, we reveal that ILK enhances HSV-1 replication in an Akt-independent manner. ILK reduces the accumulation of H3K9me3 on viral promoters and replication compartments. Notably, ILK reduces H3K9me3 in a manner independent of ICP0. Instead, we show an increased binding of H3K9 methyltransferase SUV39H1 and corepressor TRIM28 on viral promoters in ILK knockdown cells. Knocking down SUV39H1 or TRIM28 increases HSV-1 lytic gene transcription in ILK knockdown cells. These results show that ILK antagonizes SVU39H1- and TRIM28-mediated repression on lytic gene transcription. We further demonstrate that ILK knockdown reduces TRIM28 phosphorylation on serine 473 and 824 in HSV-1-infected cells, suggesting that ILK facilitates TRIM28 phosphorylation to abrogate its inhibition on lytic gene transcription. OSU-T315, an ILK inhibitor, suppresses HSV-1 replication in cells and mice. In conclusion, we demonstrate that ILK decreases H3K9me3 on HSV-1 DNA by reducing SUV39H1 and TRIM28 binding. Moreover, our results suggest that targeting ILK could be a broad-spectrum antiviral strategy for DNA and RNA virus infections, especially for DNA viruses controlled by histone modifications.

Identifiants

pubmed: 35350437
doi: 10.3389/fcimb.2022.814307
pmc: PMC8957879
doi:

Substances chimiques

Histones 0
integrin-linked kinase EC 2.7.1.-
Protein Serine-Threonine Kinases EC 2.7.11.1

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

814307

Informations de copyright

Copyright © 2022 Tsai, Chen, Chang, Hsiao and Wang.

Déclaration de conflit d'intérêts

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Références

Mol Cell Biol. 2005 Dec;25(24):11145-55
pubmed: 16314534
Sci Transl Med. 2013 Jan 9;5(167):167ra5
pubmed: 23303604
Cell Rep. 2017 Jan 3;18(1):1-11
pubmed: 28052240
mBio. 2017 May 16;8(3):
pubmed: 28512095
Nature. 1996 Jan 4;379(6560):91-6
pubmed: 8538749
J Virol. 2018 Feb 26;92(6):
pubmed: 29321326
Diabetes. 2016 Jun;65(6):1590-600
pubmed: 27207548
J Virol. 1989 Nov;63(11):4579-89
pubmed: 2552142
Circ Res. 2006 Aug 18;99(4):354-61
pubmed: 16840719
BMC Mol Biol. 2008 Jul 01;9:61
pubmed: 18590578
Nat Med. 2009 Nov;15(11):1312-7
pubmed: 19855399
mBio. 2019 Jan 22;10(1):
pubmed: 30670617
Proc Natl Acad Sci U S A. 2014 Jun 24;111(25):9169-74
pubmed: 24927542
Mol Cell Proteomics. 2017 Apr;16(4 suppl 1):S92-S107
pubmed: 28179408
mBio. 2016 Jan 12;7(1):e02007-15
pubmed: 26758183
EMBO Rep. 2003 Apr;4(4):432-8
pubmed: 12671688
Elife. 2015 Apr 07;4:
pubmed: 25846574
Genes Dev. 2010 Dec 1;24(23):2627-39
pubmed: 21123650
J Virol. 2000 Dec;74(24):11782-91
pubmed: 11090178
J Biol Chem. 2000 Jun 16;275(24):18000-10
pubmed: 10748030
Cell Rep. 2015 Oct 13;13(2):440-9
pubmed: 26440888
J Clin Invest. 2008 Oct;118(10):3470-7
pubmed: 18769632
Nat Rev Genet. 2012 Apr 03;13(5):343-57
pubmed: 22473383
Cell Cycle. 2008 Jul 15;7(14):2157-66
pubmed: 18635968
Genes Dev. 2003 Apr 1;17(7):926-40
pubmed: 12670870
PLoS One. 2015 Oct 28;10(10):e0140765
pubmed: 26510007
PLoS One. 2015 Aug 07;10(8):e0134178
pubmed: 26252011
PLoS Pathog. 2014 Nov 06;10(11):e1004503
pubmed: 25375629
Cell. 1984 Apr;36(4):857-68
pubmed: 6323024
Dev Cell. 2010 Oct 19;19(4):574-88
pubmed: 20951348
Sci Rep. 2017 Oct 30;7(1):14385
pubmed: 29085037
Int J Mol Med. 2018 Aug;42(2):957-965
pubmed: 29786754
Cell Rep. 2015 Jan 6;10(1):20-8
pubmed: 25543143
PLoS Pathog. 2008 May 23;4(5):e1000071
pubmed: 18497856
Elife. 2019 Nov 04;8:
pubmed: 31682228
J Cell Sci. 2008 Oct 1;121(Pt 19):3121-32
pubmed: 18799788
J Virol. 2012 Aug;86(16):8440-51
pubmed: 22623803
J Biol Chem. 2001 Jul 20;276(29):27462-9
pubmed: 11313365
FASEB J. 2013 Jul;27(7):2584-99
pubmed: 23507869
Nat Cell Biol. 2006 Aug;8(8):870-6
pubmed: 16862143
Genes Dev. 2010 Dec 1;24(23):2583-6
pubmed: 21123644
EMBO J. 2012 May 16;31(10):2403-15
pubmed: 22491012
Elife. 2019 Jan 17;8:
pubmed: 30652970
Antiviral Res. 2020 Apr;176:104730
pubmed: 32014498
Biochim Biophys Acta. 2004 Jul 5;1692(2-3):55-62
pubmed: 15246679
Proc Natl Acad Sci U S A. 2007 Apr 17;104(16):6782-7
pubmed: 17420447
J Virol. 2016 Aug 26;90(18):8351-9
pubmed: 27412599
mBio. 2014 Jan 14;5(1):e00958-13
pubmed: 24425731
PLoS One. 2010 Aug 23;5(8):e12356
pubmed: 20827300
Cell Host Microbe. 2015 Dec 9;18(6):649-58
pubmed: 26651941
mBio. 2014 Jan 14;5(1):e01027-13
pubmed: 24425734
Am J Physiol Cell Physiol. 2011 Apr;300(4):C723-42
pubmed: 21209361
Nature. 2010 Jan 14;463(7278):237-40
pubmed: 20075919
J Virol. 2015 Mar;89(6):3417-20
pubmed: 25552720
Nucleic Acids Res. 2018 Sep 28;46(17):8788-8802
pubmed: 29955894
Mol Metab. 2021 Jul;49:101197
pubmed: 33647469
Nat Struct Mol Biol. 2011 Jun 05;18(7):831-9
pubmed: 21642969
Elife. 2018 Nov 22;7:
pubmed: 30465651
J Biol Chem. 2002 Jan 11;277(2):1568-75
pubmed: 11694518
J Virol. 2009 Aug;83(16):8182-90
pubmed: 19515781
Mol Cell. 2019 Nov 21;76(4):646-659.e6
pubmed: 31543422
Front Microbiol. 2018 Oct 11;9:2406
pubmed: 30386309
PLoS Pathog. 2017 Mar 1;13(3):e1006249
pubmed: 28249048
Genes Dev. 2004 Jun 1;18(11):1251-62
pubmed: 15145825
Cell Signal. 2005 Jun;17(6):751-60
pubmed: 15722199
PLoS Pathog. 2021 Apr 28;17(4):e1009567
pubmed: 33909709

Auteurs

Meng-Shan Tsai (MS)

Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.

Shun-Hua Chen (SH)

Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan.

Chih-Peng Chang (CP)

Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan.

Yi-Ling Hsiao (YL)

Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.

Li-Chiu Wang (LC)

School of Medicine, I-Shou University, Kaohsiung, Taiwan.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH