BAF complex-mediated chromatin relaxation is required for establishment of X chromosome inactivation.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
29 03 2022
29 03 2022
Historique:
received:
10
01
2021
accepted:
10
03
2022
entrez:
30
3
2022
pubmed:
31
3
2022
medline:
14
4
2022
Statut:
epublish
Résumé
The process of epigenetic silencing, while fundamentally important, is not yet completely understood. Here we report a replenishable female mouse embryonic stem cell (mESC) system, Xmas, that allows rapid assessment of X chromosome inactivation (XCI), the epigenetic silencing mechanism of one of the two X chromosomes that enables dosage compensation in female mammals. Through a targeted genetic screen in differentiating Xmas mESCs, we reveal that the BAF complex is required to create nucleosome-depleted regions at promoters on the inactive X chromosome during the earliest stages of establishment of XCI. Without this action gene silencing fails. Xmas mESCs provide a tractable model for screen-based approaches that enable the discovery of unknown facets of the female-specific process of XCI and epigenetic silencing more broadly.
Identifiants
pubmed: 35351876
doi: 10.1038/s41467-022-29333-1
pii: 10.1038/s41467-022-29333-1
pmc: PMC8964718
doi:
Substances chimiques
Chromatin
0
RNA, Long Noncoding
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1658Informations de copyright
© 2022. The Author(s).
Références
Gendrel, A. V. & Heard, E. Fifty years of X-inactivation research. Development 138, 5049–5055 (2011).
pubmed: 22069183
doi: 10.1242/dev.068320
Jegu, T., Aeby, E. & Lee, J. T. The X chromosome in space. Nat. Rev. Genet 18, 377–389 (2017).
pubmed: 28479596
doi: 10.1038/nrg.2017.17
Disteche, C. M. & Berletch, J. B. X-chromosome inactivation and escape. J. Genet 94, 591–599 (2015).
pubmed: 26690513
pmcid: 4826282
doi: 10.1007/s12041-015-0574-1
Brockdorff, N. & Turner, B. M. Dosage compensation in mammals. Cold Spring Harb. Perspect. Biol. 7, a019406 (2015).
pubmed: 25731764
pmcid: 4355265
doi: 10.1101/cshperspect.a019406
Monk, M. & McLaren, A. X-chromosome activity in foetal germ cells of the mouse. J. Embryol. Exp. Morphol. 63, 75–84 (1981).
pubmed: 7310296
Tam, P. P., Zhou, S. X. & Tan, S. S. X-chromosome activity of the mouse primordial germ cells revealed by the expression of an X-linked lacZ transgene. Development 120, 2925–2932 (1994).
pubmed: 7607082
doi: 10.1242/dev.120.10.2925
Kratzer, P. G. & Chapman, V. M. X chromosome reactivation in oocytes of Mus caroli. Proc. Natl Acad. Sci. USA 78, 3093–3097 (1981).
pubmed: 6942418
pmcid: 319506
doi: 10.1073/pnas.78.5.3093
Brockdorff, N. et al. Conservation of position and exclusive expression of mouse Xist from the inactive X chromosome. Nature 351, 329–331 (1991).
pubmed: 2034279
doi: 10.1038/351329a0
Brown, C. J. et al. The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 71, 527–542 (1992).
pubmed: 1423611
doi: 10.1016/0092-8674(92)90520-M
McHugh, C. A. et al. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature 521, 232–236 (2015).
pubmed: 25915022
pmcid: 4516396
doi: 10.1038/nature14443
Chu, C. et al. Systematic discovery of Xist RNA binding proteins. Cell 161, 404–416 (2015).
pubmed: 25843628
pmcid: 4425988
doi: 10.1016/j.cell.2015.03.025
Minajigi, A. et al. Chromosomes. A comprehensive Xist interactome reveals cohesin repulsion and an RNA-directed chromosome conformation. Science 349 (2015).
Keohane, A. M., O’Neill, L. P., Belyaev, N. D., Lavender, J. S. & Turner, B. M. X-Inactivation and histone H4 acetylation in embryonic stem cells. Dev. Biol. 180, 618–630 (1996).
pubmed: 8954732
doi: 10.1006/dbio.1996.0333
Heard, E. et al. Methylation of histone H3 at Lys-9 is an early mark on the X chromosome during X inactivation. Cell 107, 727–738 (2001).
pubmed: 11747809
doi: 10.1016/S0092-8674(01)00598-0
Zylicz, J. J. et al. The implication of early chromatin changes in X chromosome inactivation. Cell 176, 182–197 e123 (2019).
pubmed: 30595450
pmcid: 6333919
doi: 10.1016/j.cell.2018.11.041
Mak, W. et al. Mitotically stable association of polycomb group proteins eed and enx1 with the inactive x chromosome in trophoblast stem cells. Curr. Biol. 12, 1016–1020 (2002).
pubmed: 12123576
doi: 10.1016/S0960-9822(02)00892-8
Silva, J. et al. Establishment of histone h3 methylation on the inactive X chromosome requires transient recruitment of Eed-Enx1 polycomb group complexes. Dev. Cell 4, 481–495 (2003).
pubmed: 12689588
doi: 10.1016/S1534-5807(03)00068-6
Plath, K. et al. Role of histone H3 lysine 27 methylation in X inactivation. Science 300, 131–135 (2003).
pubmed: 12649488
doi: 10.1126/science.1084274
de Napoles, M. et al. Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev. Cell 7, 663–676 (2004).
pubmed: 15525528
doi: 10.1016/j.devcel.2004.10.005
Fang, J., Chen, T., Chadwick, B., Li, E. & Zhang, Y. Ring1b-mediated H2A ubiquitination associates with inactive X chromosomes and is involved in initiation of X inactivation. J. Biol. Chem. 279, 52812–52815 (2004).
pubmed: 15509584
doi: 10.1074/jbc.C400493200
Plath, K. et al. Developmentally regulated alterations in Polycomb repressive complex 1 proteins on the inactive X chromosome. J. Cell Biol. 167, 1025–1035 (2004).
pubmed: 15596546
pmcid: 2172612
doi: 10.1083/jcb.200409026
Schoeftner, S. et al. Recruitment of PRC1 function at the initiation of X inactivation independent of PRC2 and silencing. EMBO J. 25, 3110–3122 (2006).
pubmed: 16763550
pmcid: 1500994
doi: 10.1038/sj.emboj.7601187
Keniry, A. et al. Setdb1-mediated H3K9 methylation is enriched on the inactive X and plays a role in its epigenetic silencing. Epigenetics Chromatin 9, 16 (2016).
pubmed: 27195021
pmcid: 4870784
doi: 10.1186/s13072-016-0064-6
Peters, A. H. et al. Histone H3 lysine 9 methylation is an epigenetic imprint of facultative heterochromatin. Nat. Genet. 30, 77–80 (2002).
pubmed: 11740497
doi: 10.1038/ng789
Boggs, B. A. et al. Differentially methylated forms of histone H3 show unique association patterns with inactive human X chromosomes. Nat. Genet. 30, 73–76 (2002).
pubmed: 11740495
doi: 10.1038/ng787
Mermoud, J. E., Popova, B., Peters, A. H., Jenuwein, T. & Brockdorff, N. Histone H3 lysine 9 methylation occurs rapidly at the onset of random X chromosome inactivation. Curr. Biol. 12, 247–251 (2002).
pubmed: 11839280
doi: 10.1016/S0960-9822(02)00660-7
Splinter, E. et al. The inactive X chromosome adopts a unique three-dimensional conformation that is dependent on Xist RNA. Genes Dev. 25, 1371–1383 (2011).
pubmed: 21690198
pmcid: 3134081
doi: 10.1101/gad.633311
Giorgetti, L. et al. Structural organization of the inactive X chromosome in the mouse. Nature 535, 575–579 (2016).
pubmed: 27437574
pmcid: 5443622
doi: 10.1038/nature18589
Deng, X. et al. Bipartite structure of the inactive mouse X chromosome. Genome Biol. 16, 152 (2015).
pubmed: 26248554
pmcid: 4539712
doi: 10.1186/s13059-015-0728-8
Nora, E. P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381–385 (2012).
pubmed: 22495304
pmcid: 3555144
doi: 10.1038/nature11049
Wang, C. Y., Jegu, T., Chu, H. P., Oh, H. J. & Lee, J. T. SMCHD1 merges chromosome compartments and assists formation of super-structures on the inactive X. Cell 174, 406–421 e425 (2018).
pubmed: 29887375
pmcid: 6475921
doi: 10.1016/j.cell.2018.05.007
Gdula, M. R. et al. The non-canonical SMC protein SmcHD1 antagonises TAD formation and compartmentalisation on the inactive X chromosome. Nat. Commun. 10, 30 (2019).
pubmed: 30604745
pmcid: 6318279
doi: 10.1038/s41467-018-07907-2
Jansz, N. et al. Smchd1 regulates long-range chromatin interactions on the inactive X chromosome and at Hox clusters. Nat. Struct. Mol. Biol. 25, 766–777 (2018).
pubmed: 30127357
doi: 10.1038/s41594-018-0111-z
Sado, T. et al. X inactivation in the mouse embryo deficient for Dnmt1: distinct effect of hypomethylation on imprinted and random X inactivation. Dev. Biol. 225, 294–303 (2000).
pubmed: 10985851
doi: 10.1006/dbio.2000.9823
Minkovsky, A. et al. The Mbd1-Atf7ip-Setdb1 pathway contributes to the maintenance of X chromosome inactivation. Epigenetics Chromatin 7, 12 (2014).
pubmed: 25028596
pmcid: 4099106
doi: 10.1186/1756-8935-7-12
Zvetkova, I. et al. Global hypomethylation of the genome in XX embryonic stem cells. Nat. Genet. 37, 1274–1279 (2005).
pubmed: 16244654
doi: 10.1038/ng1663
Ooi, S. K. et al. Dynamic instability of genomic methylation patterns in pluripotent stem cells. Epigenetics Chromatin 3, 17 (2010).
pubmed: 20868487
pmcid: 2954997
doi: 10.1186/1756-8935-3-17
Schulz, E. G. et al. The two active X chromosomes in female ESCs block exit from the pluripotent state by modulating the ESC signaling network. Cell Stem Cell 14, 203–216 (2014).
pubmed: 24506884
doi: 10.1016/j.stem.2013.11.022
Choi, J. et al. DUSP9 modulates DNA hypomethylation in female mouse pluripotent stem cells. Cell Stem Cell 20, 706–719 e707 (2017).
pubmed: 28366588
pmcid: 5524993
doi: 10.1016/j.stem.2017.03.002
Choi, J. et al. Prolonged Mek1/2 suppression impairs the developmental potential of embryonic stem cells. Nature 548, 219–223 (2017).
pubmed: 28746311
pmcid: 5905676
doi: 10.1038/nature23274
Yagi, M. et al. Derivation of ground-state female ES cells maintaining gamete-derived DNA methylation. Nature 548, 224–227 (2017).
pubmed: 28746308
doi: 10.1038/nature23286
Habibi, E. et al. Whole-genome bisulfite sequencing of two distinct interconvertible DNA methylomes of mouse embryonic stem cells. Cell Stem Cell 13, 360–369 (2013).
pubmed: 23850244
doi: 10.1016/j.stem.2013.06.002
Wu, H. et al. Cellular resolution maps of X chromosome inactivation: implications for neural development, function, and disease. Neuron 81, 103–119 (2014).
pubmed: 24411735
pmcid: 3950970
doi: 10.1016/j.neuron.2013.10.051
Ciavatta, D., Kalantry, S., Magnuson, T. & Smithies, O. A DNA insulator prevents repression of a targeted X-linked transgene but not its random or imprinted X inactivation. Proc. Natl Acad. Sci. USA 103, 9958–9963 (2006).
pubmed: 16777957
pmcid: 1479543
doi: 10.1073/pnas.0603754103
Bauer, M. et al. Chromosome compartments on the inactive X guide TAD formation independently of transcription during X-reactivation. Nat. Commun. 12, 3499 (2021).
pubmed: 34108480
pmcid: 8190187
doi: 10.1038/s41467-021-23610-1
Pasque, V. et al. X chromosome reactivation dynamics reveal stages of reprogramming to pluripotency. Cell 159, 1681–1697 (2014).
pubmed: 25525883
pmcid: 4282187
doi: 10.1016/j.cell.2014.11.040
Sommer, C. A. et al. Induced pluripotent stem cell generation using a single lentiviral stem cell cassette. Stem Cells 27, 543–549 (2009).
pubmed: 19096035
pmcid: 4848035
doi: 10.1634/stemcells.2008-1075
Takagi, N. & Sasaki, M. Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes of the mouse. Nature 256, 640–642 (1975).
pubmed: 1152998
doi: 10.1038/256640a0
Marks, H. et al. The transcriptional and epigenomic foundations of ground state pluripotency. Cell 149, 590–604 (2012).
pubmed: 22541430
pmcid: 3398752
doi: 10.1016/j.cell.2012.03.026
Maza, I. et al. Transient acquisition of pluripotency during somatic cell transdifferentiation with iPSC reprogramming factors. Nat. Biotechnol. 33, 769–774 (2015).
pubmed: 26098448
pmcid: 4500825
doi: 10.1038/nbt.3270
Ying, Q. L. et al. The ground state of embryonic stem cell self-renewal. Nature 453, 519–523 (2008).
pubmed: 18497825
pmcid: 5328678
doi: 10.1038/nature06968
Makhlouf, M. et al. A prominent and conserved role for YY1 in Xist transcriptional activation. Nat. Commun. 5, 4878 (2014).
pubmed: 25209548
doi: 10.1038/ncomms5878
Hasegawa, Y. et al. The matrix protein hnRNP U is required for chromosomal localization of Xist RNA. Dev. Cell 19, 469–476 (2010).
pubmed: 20833368
doi: 10.1016/j.devcel.2010.08.006
da Rocha, S. T. et al. Jarid2 is implicated in the initial Xist-induced targeting of PRC2 to the inactive X chromosome. Mol. Cell 53, 301–316 (2014).
pubmed: 24462204
doi: 10.1016/j.molcel.2014.01.002
Cooper, S. et al. Jarid2 binds mono-ubiquitylated H2A lysine 119 to mediate crosstalk between Polycomb complexes PRC1 and PRC2. Nat. Commun. 7, 13661 (2016).
pubmed: 27892467
pmcid: 5133711
doi: 10.1038/ncomms13661
Vizlin-Hodzic, D., Johansson, H., Ryme, J., Simonsson, T. & Simonsson, S. SAF-A has a role in transcriptional regulation of Oct4 in ES cells through promoter binding. Cell Reprogram 13, 13–27 (2011).
pubmed: 21235343
pmcid: 3030915
doi: 10.1089/cell.2010.0075
Donohoe, M. E., Zhang, L. F., Xu, N., Shi, Y. & Lee, J. T. Identification of a Ctcf cofactor, Yy1, for the X chromosome binary switch. Mol. Cell 25, 43–56 (2007).
pubmed: 17218270
doi: 10.1016/j.molcel.2006.11.017
Blewitt, M. E. et al. An N-ethyl-N-nitrosourea screen for genes involved in variegation in the mouse. Proc. Natl. Acad. Sci. USA 102, 7629–7634 (2005).
pubmed: 15890782
pmcid: 1140414
doi: 10.1073/pnas.0409375102
Daxinger, L. et al. An ENU mutagenesis screen identifies novel and known genes involved in epigenetic processes in the mouse. Genome Biol. 14, R96 (2013).
pubmed: 24025402
pmcid: 4053835
doi: 10.1186/gb-2013-14-9-r96
Ashe, A. et al. A genome-wide screen for modifiers of transgene variegation identifies genes with critical roles in development. Genome Biol. 9, R182 (2008).
pubmed: 19099580
pmcid: 2646286
doi: 10.1186/gb-2008-9-12-r182
Daxinger, L. et al. A forward genetic screen identifies eukaryotic translation initiation factor 3, subunit H (eIF3h), as an enhancer of variegation in the mouse. G3 (Bethesda) 2, 1393–1396 (2012).
doi: 10.1534/g3.112.004036
Harten, S. K. et al. The first mouse mutants of D14Abb1e (Fam208a) show that it is critical for early development. Mamm. Genome 25, 293–303 (2014).
pubmed: 24781204
pmcid: 4105592
doi: 10.1007/s00335-014-9516-0
Whitelaw, N. C. et al. Reduced levels of two modifiers of epigenetic gene silencing, Dnmt3a and Trim28, cause increased phenotypic noise. Genome Biol. 11, R111 (2010).
pubmed: 21092094
pmcid: 3156950
doi: 10.1186/gb-2010-11-11-r111
Youngson, N. A. et al. No evidence for cumulative effects in a Dnmt3b hypomorph across multiple generations. Mamm. Genome 24, 206–217 (2013).
pubmed: 23636699
doi: 10.1007/s00335-013-9451-5
Blewitt, M. & Whitelaw, E. The use of mouse models to study epigenetics. Cold Spring Harb. Perspect. Biol. 5, a017939 (2013).
pubmed: 24186070
pmcid: 3809579
doi: 10.1101/cshperspect.a017939
Chong, S. et al. Modifiers of epigenetic reprogramming show paternal effects in the mouse. Nat. Genet. 39, 614–622 (2007).
pubmed: 17450140
pmcid: 3199608
doi: 10.1038/ng2031
Blewitt, M. E. et al. SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation. Nat. Genet. 40, 663–669 (2008).
pubmed: 18425126
doi: 10.1038/ng.142
Kaeser, M. D., Aslanian, A., Dong, M. Q., Yates, J. R. 3rd & Emerson, B. M. BRD7, a novel PBAF-specific SWI/SNF subunit, is required for target gene activation and repression in embryonic stem cells. J. Biol. Chem. 283, 32254–32263 (2008).
pubmed: 18809673
pmcid: 2583284
doi: 10.1074/jbc.M806061200
Fazzio, T. G., Huff, J. T. & Panning, B. An RNAi screen of chromatin proteins identifies Tip60-p400 as a regulator of embryonic stem cell identity. Cell 134, 162–174 (2008).
pubmed: 18614019
pmcid: 4308735
doi: 10.1016/j.cell.2008.05.031
Ho, L. et al. An embryonic stem cell chromatin remodeling complex, esBAF, is essential for embryonic stem cell self-renewal and pluripotency. Proc. Natl Acad. Sci. USA 106, 5181–5186 (2009).
pubmed: 19279220
pmcid: 2654396
doi: 10.1073/pnas.0812889106
Schick, S. et al. Acute BAF perturbation causes immediate changes in chromatin accessibility. Nat. Genet. 53, 269–278 (2021).
pubmed: 33558760
doi: 10.1038/s41588-021-00777-3
Schick, S. et al. Systematic characterization of BAF mutations provides insights into intracomplex synthetic lethalities in human cancers. Nat. Genet 51, 1399–1410 (2019).
pubmed: 31427792
pmcid: 6952272
doi: 10.1038/s41588-019-0477-9
Ng, K. et al. A system for imaging the regulatory noncoding Xist RNA in living mouse embryonic stem cells. Mol. Biol. Cell 22, 2634–2645 (2011).
pubmed: 21613549
pmcid: 3135487
doi: 10.1091/mbc.e11-02-0146
Rodermund, L. et al. Time-resolved structured illumination microscopy reveals key principles of Xist RNA spreading. Science 372 (2021).
Moindrot, B. et al. A pooled shRNA screen identifies Rbm15, Spen, and Wtap as factors required for Xist rna-mediated silencing. Cell Rep. 12, 562–572 (2015).
pubmed: 26190105
pmcid: 4534822
doi: 10.1016/j.celrep.2015.06.053
Hadjantonakis, A. K., Gertsenstein, M., Ikawa, M., Okabe, M. & Nagy, A. Non-invasive sexing of preimplantation stage mammalian embryos. Nat. Genet. 19, 220–222 (1998).
pubmed: 9662390
doi: 10.1038/893
Hadjantonakis, A. K., Cox, L. L., Tam, P. P. & Nagy, A. An X-linked GFP transgene reveals unexpected paternal X-chromosome activity in trophoblastic giant cells of the mouse placenta. Genesis 29, 133–140 (2001).
pubmed: 11252054
doi: 10.1002/gene.1016
Csankovszki, G., Nagy, A. & Jaenisch, R. Synergism of Xist RNA, DNA methylation, and histone hypoacetylation in maintaining X chromosome inactivation. J. Cell Biol. 153, 773–784 (2001).
pubmed: 11352938
pmcid: 2192370
doi: 10.1083/jcb.153.4.773
Mohandas, T., Sparkes, R. S. & Shapiro, L. J. Reactivation of an inactive human X chromosome: evidence for X inactivation by DNA methylation. Science 211, 393–396 (1981).
pubmed: 6164095
doi: 10.1126/science.6164095
Graves, J. A. 5-azacytidine-induced re-expression of alleles on the inactive X chromosome in a hybrid mouse cell line. Exp. Cell Res. 141, 99–105 (1982).
pubmed: 6180921
doi: 10.1016/0014-4827(82)90072-6
Royce-Tolland, M. E. et al. The A-repeat links ASF/SF2-dependent Xist RNA processing with random choice during X inactivation. Nat. Struct. Mol. Biol. 17, 948–954 (2010).
pubmed: 20657585
pmcid: 4336797
doi: 10.1038/nsmb.1877
Jegu, T. et al. Xist RNA antagonizes the SWI/SNF chromatin remodeler BRG1 on the inactive X chromosome. Nat. Struct. Mol. Biol. 26, 96–109 (2019).
pubmed: 30664740
pmcid: 6421574
doi: 10.1038/s41594-018-0176-8
Lay, F. D., Kelly, T. K. & Jones, P. A. Nucleosome occupancy and methylome sequencing (NOMe-seq). Methods Mol. Biol. 1708, 267–284 (2018).
pubmed: 29224149
doi: 10.1007/978-1-4939-7481-8_14
Kelly, T. K. et al. Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules. Genome Res. 22, 2497–2506 (2012).
pubmed: 22960375
pmcid: 3514679
doi: 10.1101/gr.143008.112
Taberlay, P. C., Statham, A. L., Kelly, T. K., Clark, S. J. & Jones, P. A. Reconfiguration of nucleosome-depleted regions at distal regulatory elements accompanies DNA methylation of enhancers and insulators in cancer. Genome Res. 24, 1421–1432 (2014).
pubmed: 24916973
pmcid: 4158760
doi: 10.1101/gr.163485.113
Argelaguet, R. et al. Multi-omics profiling of mouse gastrulation at single-cell resolution. Nature 576, 487–491 (2019).
pubmed: 31827285
pmcid: 6924995
doi: 10.1038/s41586-019-1825-8
Ohhata, T. et al. Dynamics of transcription-mediated conversion from euchromatin to facultative heterochromatin at the Xist promoter by Tsix. Cell Rep. 34, 108912 (2021).
pubmed: 33789104
doi: 10.1016/j.celrep.2021.108912
Minkovsky, A. et al. A high-throughput screen of inactive X chromosome reactivation identifies the enhancement of DNA demethylation by 5-aza-2’-dC upon inhibition of ribonucleotide reductase. Epigenetics Chromatin 8, 42 (2015).
pubmed: 26468331
pmcid: 4604769
doi: 10.1186/s13072-015-0034-4
Lessing, D. et al. A high-throughput small molecule screen identifies synergism between DNA methylation and Aurora kinase pathways for X reactivation. Proc. Natl Acad. Sci. USA 113, 14366–14371 (2016).
pubmed: 28182563
pmcid: 5167172
doi: 10.1073/pnas.1617597113
Bhatnagar, S. et al. Genetic and pharmacological reactivation of the mammalian inactive X chromosome. Proc. Natl. Acad. Sci. USA 111, 12591–12598 (2014).
pubmed: 25136103
pmcid: 4156765
doi: 10.1073/pnas.1413620111
Sripathy, S. et al. Screen for reactivation of MeCP2 on the inactive X chromosome identifies the BMP/TGF-beta superfamily as a regulator of XIST expression. Proc. Natl Acad. Sci. USA 114, 1619–1624 (2017).
pubmed: 28143937
pmcid: 5321041
doi: 10.1073/pnas.1621356114
Li, W. et al. Genome-wide RNAi screen identify melanoma-associated antigen Mageb3 involved in X chromosome inactivation. J. Mol. Biol. 430, 2734–2746 (2018).
pubmed: 29800566
doi: 10.1016/j.jmb.2018.05.031
Chan, K. M., Zhang, H., Malureanu, L., van Deursen, J. & Zhang, Z. Diverse factors are involved in maintaining X chromosome inactivation. Proc. Natl Acad. Sci. USA 108, 16699–16704 (2011).
pubmed: 21940502
pmcid: 3189073
doi: 10.1073/pnas.1107616108
Monfort, A. et al. Identification of Spen as a crucial factor for xist function through forward genetic screening in haploid embryonic stem cells. Cell Rep. 12, 554–561 (2015).
pubmed: 26190100
pmcid: 4530576
doi: 10.1016/j.celrep.2015.06.067
Mashtalir, N. et al. Modular organization and assembly of SWI/SNF family chromatin remodeling complexes. Cell 175, 1272e1220 (2018).
doi: 10.1016/j.cell.2018.09.032
Wang, W. et al. Purification and biochemical heterogeneity of the mammalian SWI-SNF complex. EMBO J. 15, 5370–5382 (1996).
pubmed: 8895581
pmcid: 452280
doi: 10.1002/j.1460-2075.1996.tb00921.x
Wang, W. et al. Diversity and specialization of mammalian SWI/SNF complexes. Genes Dev. 10, 2117–2130 (1996).
pubmed: 8804307
doi: 10.1101/gad.10.17.2117
Han, D. et al. SRG3, a core component of mouse SWI/SNF complex, is essential for extra-embryonic vascular development. Dev. Biol. 315, 136–146 (2008).
pubmed: 18206867
doi: 10.1016/j.ydbio.2007.12.024
Bultman, S. et al. A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol. Cell 6, 1287–1295 (2000).
pubmed: 11163203
doi: 10.1016/S1097-2765(00)00127-1
Kidder, B. L., Palmer, S. & Knott, J. G. SWI/SNF-Brg1 regulates self-renewal and occupies core pluripotency-related genes in embryonic stem cells. Stem Cells 27, 317–328 (2009).
pubmed: 19056910
doi: 10.1634/stemcells.2008-0710
Pintacuda, G. et al. hnRNPK recruits PCGF3/5-PRC1 to the Xist RNA B-repeat to establish polycomb-mediated chromosomal silencing. Mol. Cell 68, 955–969 e910 (2017).
pubmed: 29220657
pmcid: 5735038
doi: 10.1016/j.molcel.2017.11.013
Dossin, F. et al. SPEN integrates transcriptional and epigenetic control of X-inactivation. Nature 578, 455–460 (2020).
pubmed: 32025035
pmcid: 7035112
doi: 10.1038/s41586-020-1974-9
Farley, F. W., Soriano, P., Steffen, L. S. & Dymecki, S. M. Widespread recombinase expression using FLPeR (flipper) mice. Genesis 28, 106–110 (2000).
pubmed: 11105051
doi: 10.1002/1526-968X(200011/12)28:3/4<106::AID-GENE30>3.0.CO;2-T
Majewski, I. J. et al. Polycomb repressive complex 2 (PRC2) restricts hematopoietic stem cell activity. PLoS Biol. 6, e93 (2008).
pubmed: 18416604
pmcid: 2292752
doi: 10.1371/journal.pbio.0060093
Jansz, N. et al. Smchd1 Targeting to the Inactive X Is Dependent on the Xist-HnrnpK-PRC1 Pathway. Cell Rep. 25, 1912–1923 e1919 (2018).
pubmed: 30428357
doi: 10.1016/j.celrep.2018.10.044
Kinkel, S. A. et al. Jarid2 regulates hematopoietic stem cell function by acting with polycomb repressive complex 2. Blood 125, 1890–1900 (2015).
pubmed: 25645357
pmcid: 4424268
doi: 10.1182/blood-2014-10-603969
Majewski, I. J. et al. Opposing roles of polycomb repressive complexes in hematopoietic stem and progenitor cells. Blood 116, 731–739 (2010).
pubmed: 20445021
doi: 10.1182/blood-2009-12-260760
Gayen, S., Maclary, E., Buttigieg, E., Hinten, M. & Kalantry, S. A primary role for the Tsix lncRNA in maintaining random X-chromosome inactivation. Cell Rep. 11, 1251–1265 (2015).
pubmed: 25981039
pmcid: 4449283
doi: 10.1016/j.celrep.2015.04.039
Nefzger, C. M., Alaei, S., Knaupp, A. S., Holmes, M. L. & Polo, J. M. Cell surface marker mediated purification of iPS cell intermediates from a reprogrammable mouse model. J. Vis. Exp. 6, e51728 (2014).
Nefzger, C. M. et al. A versatile strategy for isolating a highly enriched population of intestinal stem cells. Stem Cell Rep. 6, 321–329 (2016).
doi: 10.1016/j.stemcr.2016.01.014
Krueger, F. Available at: http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/ .
Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111 (2009).
pubmed: 19289445
pmcid: 2672628
doi: 10.1093/bioinformatics/btp120
Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).
pubmed: 25751142
pmcid: 4655817
doi: 10.1038/nmeth.3317
Krueger, F. & Andrews, S. R. SNPsplit: Allele-specific splitting of alignments between genomes with known SNP genotypes. F1000Res 5, 1479 (2016).
pubmed: 27429743
pmcid: 4934512
doi: 10.12688/f1000research.9037.1
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
pubmed: 19910308
doi: 10.1093/bioinformatics/btp616
McCarthy, D. J., Chen, Y. & Smyth, G. K. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 40, 4288–4297 (2012).
pubmed: 22287627
pmcid: 3378882
doi: 10.1093/nar/gks042
Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29 (2014).
pubmed: 24485249
pmcid: 4053721
doi: 10.1186/gb-2014-15-2-r29
Alhamdoosh, M. et al. Easy and efficient ensemble gene set testing with EGSEA. F1000Res 6, 2010 (2017).
pubmed: 29333246
pmcid: 5747338
doi: 10.12688/f1000research.12544.1
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
pubmed: 22388286
pmcid: 3322381
doi: 10.1038/nmeth.1923
Chaumeil, J., Augui, S., Chow, J. C. & Heard, E. Combined immunofluorescence, RNA fluorescent in situ hybridization, and DNA fluorescent in situ hybridization to study chromatin changes, transcriptional activity, nuclear organization, and X-chromosome inactivation. Methods Mol. Biol. 463, 297–308 (2008).
pubmed: 18951174
doi: 10.1007/978-1-59745-406-3_18
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
pubmed: 22743772
doi: 10.1038/nmeth.2019
Wutz, A. & Jaenisch, R. A shift from reversible to irreversible X inactivation is triggered during ES cell differentiation. Mol. Cell 5, 695–705 (2000).
pubmed: 10882105
doi: 10.1016/S1097-2765(00)80248-8
Krueger, F. & Andrews, S. R. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27, 1571–1572 (2011).
pubmed: 21493656
pmcid: 3102221
doi: 10.1093/bioinformatics/btr167