Cpx-signalling facilitates Hms-dependent biofilm formation by Yersinia pseudotuberculosis.


Journal

NPJ biofilms and microbiomes
ISSN: 2055-5008
Titre abrégé: NPJ Biofilms Microbiomes
Pays: United States
ID NLM: 101666944

Informations de publication

Date de publication:
29 03 2022
Historique:
received: 22 09 2021
accepted: 18 02 2022
entrez: 30 3 2022
pubmed: 31 3 2022
medline: 1 4 2022
Statut: epublish

Résumé

Bacteria often reside in sessile communities called biofilms, where they adhere to a variety of surfaces and exist as aggregates in a viscous polymeric matrix. Biofilms are resistant to antimicrobial treatments, and are a major contributor to the persistence and chronicity of many bacterial infections. Herein, we determined that the CpxA-CpxR two-component system influenced the ability of enteropathogenic Yersinia pseudotuberculosis to develop biofilms. Mutant bacteria that accumulated the active CpxR~P isoform failed to form biofilms on plastic or on the surface of the Caenorhabditis elegans nematode. A failure to form biofilms on the worm surface prompted their survival when grown on the lawns of Y. pseudotuberculosis. Exopolysaccharide production by the hms loci is the major driver of biofilms formed by Yersinia. We used a number of molecular genetic approaches to demonstrate that active CpxR~P binds directly to the promoter regulatory elements of the hms loci to activate the repressors of hms expression and to repress the activators of hms expression. Consequently, active Cpx-signalling culminated in a loss of exopolysaccharide production. Hence, the development of Y. pseudotuberculosis biofilms on multiple surfaces is controlled by the Cpx-signalling, and at least in part this occurs through repressive effects on the Hms-dependent exopolysaccharide production.

Identifiants

pubmed: 35351893
doi: 10.1038/s41522-022-00281-4
pii: 10.1038/s41522-022-00281-4
pmc: PMC8964730
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

13

Informations de copyright

© 2022. The Author(s).

Références

Galindo, C. L., Rosenzweig, J. A., Kirtley, M. L. & Chopra, A. K. Pathogenesis of Y. enterocolitica and Y. pseudotuberculosis in Human Yersiniosis. J. Pathog. 2011, 182051 (2011).
pubmed: 22567322 pmcid: 3335670 doi: 10.4061/2011/182051
Barbieri, R. et al. Yersinia pestis: the Natural History of Plague. Clin. Microbiol. Rev. 34, 1–44 (2020).
Valles, X. et al. Human plague: An old scourge that needs new answers. PLoS Negl. Trop. Dis. 14, e0008251 (2020).
pubmed: 32853251 pmcid: 7451524 doi: 10.1371/journal.pntd.0008251
Califf, K. J., Keim, P. S., Wagner, D. M. & Sahl, J. W. Redefining the differences in gene content between Yersinia pestis and Yersinia pseudotuberculosis using large-scale comparative genomics. Micro. Genom. 1, e000028 (2015).
Atkinson S., Williams P. Yersinia virulence factors—a sophisticated arsenal for combating host defences. F1000Res. 5,1–10 (2016).
Vestby L. K., Gronseth T., Simm R., Nesse L. L. Bacterial Biofilm and its Role in the Pathogenesis of Disease. Antibiotics. 9, 1–29 (2020).
Donne, J. & Dewilde, S. The Challenging World of Biofilm Physiology. Adv. Micro. Physiol. 67, 235–292 (2015).
doi: 10.1016/bs.ampbs.2015.09.003
Del Pozo, J. L. Biofilm-related disease. Expert Rev. Anti Infect. Ther. 16, 51–65 (2018).
pubmed: 29235402 doi: 10.1080/14787210.2018.1417036
Joshua, G. W. P. et al. Caenorhabditis elegans model of Yersinia infection: biofilm formation on a biotic surface. Microbiology 149, 3221–3229 (2003).
pubmed: 14600234 doi: 10.1099/mic.0.26475-0
Erickson, D. L., Jarrett, C. O., Wren, B. W. & Hinnebusch, B. J. Serotype differences and lack of biofilm formation characterize Yersinia pseudotuberculosis infection of the Xenopsylla cheopis flea vector of Yersinia pestis. J. Bacteriol. 188, 1113–1119 (2006).
pubmed: 16428415 pmcid: 1347331 doi: 10.1128/JB.188.3.1113-1119.2006
Zhou, D. & Yang, R. Formation and regulation of Yersinia biofilms. Protein Cell. 2, 173–179 (2011).
pubmed: 21380640 pmcid: 4875308 doi: 10.1007/s13238-011-1024-3
Darby, C., Hsu, J. W., Ghori, N. & Falkow, S. Caenorhabditis elegans: plague bacteria biofilm blocks food intake. Nature 417, 243–244 (2002).
pubmed: 12015591 doi: 10.1038/417243a
Hinnebusch, B. J., Perry, R. D. & Schwan, T. G. Role of the Yersinia pestis hemin storage (hms) locus in the transmission of plague by fleas. Science 273, 367–370 (1996).
pubmed: 8662526 doi: 10.1126/science.273.5273.367
Lillard, J. W. Jr., Fetherston, J. D., Pedersen, L., Pendrak, M. L. & Perry, R. D. Sequence and genetic analysis of the hemin storage (hms) system of Yersinia pestis. Gene 193, 13–21 (1997).
pubmed: 9249062 doi: 10.1016/S0378-1119(97)00071-1
Jarrett, C. O. et al. Transmission of Yersinia pestis from an infectious biofilm in the flea vector. J. Infect. Dis. 190, 783–792 (2004).
pubmed: 15272407 doi: 10.1086/422695
Bobrov, A. G., Kirillina, O., Forman, S., Mack, D. & Perry, R. D. Insights into Yersinia pestis biofilm development: topology and co-interaction of Hms inner membrane proteins involved in exopolysaccharide production. Environ. Microbiol. 10, 1419–1432 (2008).
pubmed: 18279344 doi: 10.1111/j.1462-2920.2007.01554.x
Erickson, D. L., Jarrett, C. O., Callison, J. A., Fischer, E. R. & Hinnebusch, B. J. Loss of a biofilm-inhibiting glycosyl hydrolase during the emergence of Yersinia pestis. J. Bacteriol. 190, 8163–8170 (2008).
pubmed: 18931111 pmcid: 2593235 doi: 10.1128/JB.01181-08
Forman, S. et al. Identification of critical amino acid residues in the plague biofilm Hms proteins. Microbiology 152, 3399–3410 (2006).
pubmed: 17074909 doi: 10.1099/mic.0.29224-0
Kirillina, O., Fetherston, J. D., Bobrov, A. G., Abney, J. & Perry, R. D. HmsP, a putative phosphodiesterase, and HmsT, a putative diguanylate cyclase, control Hms-dependent biofilm formation in Yersinia pestis. Mol. Microbiol. 54, 75–88 (2004).
pubmed: 15458406 doi: 10.1111/j.1365-2958.2004.04253.x
Sun, Y. C., Hinnebusch, B. J. & Darby, C. Experimental evidence for negative selection in the evolution of a Yersinia pestis pseudogene. Proc. Natl Acad. Sci. USA. 105, 8097–8101 (2008).
pubmed: 18523005 pmcid: 2430365 doi: 10.1073/pnas.0803525105
Abu Khweek, A., Fetherston, J. D. & Perry, R. D. Analysis of HmsH and its role in plague biofilm formation. Microbiology 156, 1424–1438 (2010).
pubmed: 20093287 pmcid: 2889448 doi: 10.1099/mic.0.036640-0
Bobrov, A. G. et al. Systematic analysis of cyclic di-GMP signalling enzymes and their role in biofilm formation and virulence in Yersinia pestis. Mol. Microbiol. 79, 533–551 (2011).
pubmed: 21219468 doi: 10.1111/j.1365-2958.2010.07470.x
Sun, Y. C. et al. Differential control of Yersinia pestis biofilm formation in vitro and in the flea vector by two c-di-GMP diguanylate cyclases. PLoS One 6, e19267 (2011).
pubmed: 21559445 pmcid: 3084805 doi: 10.1371/journal.pone.0019267
Bobrov, A. G., Kirillina, O. & Perry, R. D. The phosphodiesterase activity of the HmsP EAL domain is required for negative regulation of biofilm formation in Yersinia pestis. FEMS Microbiol Lett. 247, 123–130 (2005).
pubmed: 15935569 doi: 10.1016/j.femsle.2005.04.036
Chouikha, I., Sturdevant, D. E., Jarrett, C., Sun, Y. C., Hinnebusch, B. J. Differential Gene Expression Patterns of Yersinia pestis and Yersinia pseudotuberculosis during Infection and Biofilm Formation in the Flea Digestive Tract. mSystems. 4, 1–19 (2019).
Joshua, G. W. et al. Genome-wide evaluation of the interplay between Caenorhabditis elegans and Yersinia pseudotuberculosis during in vivo biofilm formation. Infect. Immun. 83, 17–27 (2015).
pubmed: 25312958 doi: 10.1128/IAI.00110-14
Liu, L. & Zheng, S. Transcriptional regulation of Yersinia pestis biofilm formation. Micro. Pathog. 131, 212–217 (2019).
doi: 10.1016/j.micpath.2019.04.011
Ritzert, J. T., Minasov, G., Embry, R., Schipma, M. J., Satchell, K. J. F. The Cyclic AMP Receptor Protein Regulates Quorum Sensing and Global Gene Expression in Yersinia pestis during Planktonic Growth and Growth in Biofilms. mBio. 10, 1–18 (2019).
Atkinson, S. et al. Biofilm development on Caenorhabditis elegans by Yersinia is facilitated by quorum sensing-dependent repression of type III secretion. PLoS Pathog. 7, e1001250 (2011).
pubmed: 21253572 pmcid: 3017118 doi: 10.1371/journal.ppat.1001250
Zhao, R. et al. A starvation-induced regulator, RovM, acts as a switch for planktonic/biofilm state transition in Yersinia pseudotuberculosis. Sci. Rep. 7, 639 (2017).
pubmed: 28377623 pmcid: 5428675 doi: 10.1038/s41598-017-00534-9
Fang, N. et al. RcsAB is a major repressor of Yersinia biofilm development through directly acting on hmsCDE, hmsT, and hmsHFRS. Sci. Rep. 5, 9566 (2015).
pubmed: 25828910 pmcid: 4381331 doi: 10.1038/srep09566
Guo, X. P., Ren, G. X., Zhu, H., Mao, X. J. & Sun, Y. C. Differential regulation of the hmsCDE operon in Yersinia pestis and Yersinia pseudotuberculosis by the Rcs phosphorelay system. Sci. Rep. 5, 8412 (2015).
pubmed: 25672461 pmcid: 4325325 doi: 10.1038/srep08412
Liu, L., et al. Reciprocal regulation of Yersinia pestis biofilm formation and virulence by RovM and RovA. Open Biol. 6, 1–10 (2016).
Vadyvaloo, V. & Hinz, A. K. A LysR-Type Transcriptional Regulator, RovM, Senses Nutritional Cues Suggesting that It Is Involved in Metabolic Adaptation of Yersinia pestis to the Flea Gut. PLoS One 10, e0137508 (2015).
pubmed: 26348850 pmcid: 4562620 doi: 10.1371/journal.pone.0137508
Sun, Y. C., Guo, X. P., Hinnebusch, B. J. & Darby, C. The Yersinia pestis Rcs phosphorelay inhibits biofilm formation by repressing transcription of the diguanylate cyclase gene hmsT. J. Bacteriol. 194, 2020–2026 (2012).
pubmed: 22328676 pmcid: 3318482 doi: 10.1128/JB.06243-11
Guan, J. et al. Roles of RpoS in Yersinia pseudotuberculosis stress survival, motility, biofilm formation and type VI secretion system expression. J. Microbiol. 53, 633–642 (2015).
pubmed: 26310305 doi: 10.1007/s12275-015-0099-6
Schachterle, J. K. et al. Yersinia pseudotuberculosis BarA-UvrY Two-Component Regulatory System Represses Biofilms via CsrB. Front Cell Infect. Microbiol. 8, 323 (2018).
pubmed: 30280093 pmcid: 6153318 doi: 10.3389/fcimb.2018.00323
Xu, S. et al. FliS modulates FlgM activity by acting as a non-canonical chaperone to control late flagellar gene expression, motility and biofilm formation in Yersinia pseudotuberculosis. Environ. Microbiol. 16, 1090–1104 (2014).
pubmed: 23957589 doi: 10.1111/1462-2920.12222
Bontemps-Gallo, S. et al. Nutrient depletion may trigger the Yersinia pestis OmpR-EnvZ regulatory system to promote flea-borne plague transmission. Mol. Microbiol. 112, 1471–1482 (2019).
pubmed: 31424585 pmcid: 6842400 doi: 10.1111/mmi.14372
Vadyvaloo, V. et al. Role of the PhoP-PhoQ gene regulatory system in adaptation of Yersinia pestis to environmental stress in the flea digestive tract. Microbiology 161, 1198–1210 (2015).
pubmed: 25804213 pmcid: 4635514 doi: 10.1099/mic.0.000082
Rebeil, R. et al. Induction of the Yersinia pestis PhoP-PhoQ regulatory system in the flea and its role in producing a transmissible infection. J. Bacteriol. 195, 1920–1930 (2013).
pubmed: 23435973 pmcid: 3624595 doi: 10.1128/JB.02000-12
Silva-Rohwer, A. R. et al. CsrA Enhances Cyclic-di-GMP Biosynthesis and Yersinia pestis Biofilm Blockage of the Flea Foregut by Alleviating Hfq-Dependent Repression of the hmsT mRNA. mBio. 12, e0135821 (2021).
pubmed: 34340543 doi: 10.1128/mBio.01358-21
Bellows, L. E., Koestler, B. J., Karaba, S. M., Waters, C. M. & Lathem, W. W. Hfq-dependent, co-ordinate control of cyclic diguanylate synthesis and catabolism in the plague pathogen Yersinia pestis. Mol. Microbiol. 86, 661–674 (2012).
pubmed: 22924957 pmcid: 3480973 doi: 10.1111/mmi.12011
Liu, L. et al. CRP Is an Activator of Yersinia pestis Biofilm Formation that Operates via a Mechanism Involving gmhA and waaAE-coaD. Front. Microbiol. 7, 295 (2016).
pubmed: 27014218 pmcid: 4782182
Willias, S. P., Chauhan, S., Lo, C. C., Chain, P. S. & Motin, V. L. CRP-Mediated Carbon Catabolite Regulation of Yersinia pestis Biofilm Formation Is Enhanced by the Carbon Storage Regulator Protein, CsrA. PLoS One 10, e0135481 (2015).
pubmed: 26305456 pmcid: 4549057 doi: 10.1371/journal.pone.0135481
Sun, F. et al. Fur is a repressor of biofilm formation in Yersinia pestis. PLoS One 7, e52392 (2012).
pubmed: 23285021 pmcid: 3528687 doi: 10.1371/journal.pone.0052392
Liu, Z. et al. Plasmid pPCP1-derived sRNA HmsA promotes biofilm formation of Yersinia pestis. BMC Microbiol. 16, 176 (2016).
pubmed: 27492011 pmcid: 4973556 doi: 10.1186/s12866-016-0793-5
Ni, B., Wu, H. S., Xin, Y. Q., Zhang, Q. W. & Zhang, Y. Q. Reciprocal Regulation between Fur and Two RyhB Homologs in Yersinia pestis, and Roles of RyhBs in Biofilm Formation. Biomed. Environ. Sci. 34, 299–308 (2021).
pubmed: 33894809
Liu, J., Obi, I. R., Thanikkal, E. J., Kieselbach, T. & Francis, M. S. Phosphorylated CpxR restricts production of the RovA global regulator in Yersinia pseudotuberculosis. PLoS One 6, e23314 (2011).
pubmed: 21876746 pmcid: 3158067 doi: 10.1371/journal.pone.0023314
Thanikkal, E. J. et al. The Yersinia pseudotuberculosis Cpx envelope stress system contributes to transcriptional activation of rovM. Virulence 10, 37–57 (2019).
pubmed: 30518290 doi: 10.1080/21505594.2018.1556151
Fei, K., Chao, H. J., Hu, Y., Francis, M. S., Chen, S. CpxR regulates the Rcs phosphorelay system in controlling the Ysc-Yop type III secretion system in Yersinia pseudotuberculosis. Microbiology. 167, 1–11 (2021).
Raivio, T. L. Everything old is new again: an update on current research on the Cpx envelope stress response. Biochim. Biophys. Acta. 1843, 1529–1541 (2014).
pubmed: 24184210 doi: 10.1016/j.bbamcr.2013.10.018
Bury-Mone, S. et al. Global analysis of extracytoplasmic stress signaling in Escherichia coli. PLoS Genet. 5, e1000651 (2009).
pubmed: 19763168 pmcid: 2731931 doi: 10.1371/journal.pgen.1000651
Labandeira-Rey, M., Brautigam, C. A. & Hansen, E. J. Characterization of the CpxRA regulon in Haemophilus ducreyi. Infect. Immun. 78, 4779–4791 (2010).
pubmed: 20805330 pmcid: 2976327 doi: 10.1128/IAI.00678-10
Choudhary, K. S., et al. Elucidation of Regulatory Modes for Five Two-Component Systems in Escherichia coli Reveals Novel Relationships. mSystems. 5, 1–20 (2020).
Dbeibo, L., et al. Evaluation of CpxRA as a Therapeutic Target for Uropathogenic Escherichia coli Infections. Infect. Immun. 86, 1–16 (2018).
Hews, C. L., Cho, T., Rowley, G. & Raivio, T. L. Maintaining Integrity Under Stress: Envelope Stress Response Regulation of Pathogenesis in Gram-Negative Bacteria. Front. Cell Infect. Microbiol. 9, 313 (2019).
pubmed: 31552196 pmcid: 6737893 doi: 10.3389/fcimb.2019.00313
Laventie, B. J. & Jenal, U. Surface Sensing and Adaptation in Bacteria. Annu. Rev. Microbiol. 74, 735–760 (2020).
pubmed: 32905753 doi: 10.1146/annurev-micro-012120-063427
Kimkes, T. E. P. & Heinemann, M. How bacteria recognise and respond to surface contact. FEMS Microbiol. Rev. 44, 106–122 (2020).
pubmed: 31769807 doi: 10.1093/femsre/fuz029
Otto, K. & Silhavy, T. J. Surface sensing and adhesion of Escherichia coli controlled by the Cpx-signaling pathway. Proc. Natl Acad. Sci. USA. 99, 2287–2292 (2002).
pubmed: 11830644 pmcid: 122357 doi: 10.1073/pnas.042521699
Ferrieres, L. & Clarke, D. J. The RcsC sensor kinase is required for normal biofilm formation in Escherichia coli K-12 and controls the expression of a regulon in response to growth on a solid surface. Mol. Microbiol. 50, 1665–1682 (2003).
pubmed: 14651646 doi: 10.1046/j.1365-2958.2003.03815.x
Shimizu, T., Ichimura, K. & Noda, M. The Surface Sensor NlpE of Enterohemorrhagic Escherichia coli Contributes to Regulation of the Type III Secretion System and Flagella by the Cpx Response to Adhesion. Infect. Immun. 84, 537–549 (2016).
pubmed: 26644384 pmcid: 4730559 doi: 10.1128/IAI.00881-15
Kimkes, T. E. P. & Heinemann, M. Reassessing the role of the Escherichia coli CpxAR system in sensing surface contact. PLoS One 13, e0207181 (2018).
pubmed: 30412611 pmcid: 6226299 doi: 10.1371/journal.pone.0207181
Carlsson, K. E., Liu, J., Edqvist, P. J. & Francis, M. S. Influence of the Cpx extracytoplasmic-stress-responsive pathway on Yersinia sp.-eukaryotic cell contact. Infect. Immun. 75, 4386–4399 (2007).
pubmed: 17620356 pmcid: 1951158 doi: 10.1128/IAI.01450-06
Bontemps-Gallo, S., Madec, E. & Lacroix, J. M. The two-component system CpxAR is essential for virulence in the phytopathogen bacteria Dickeya dadantii EC3937. Environ. Microbiol. 17, 4415–4428 (2015).
pubmed: 25856505 pmcid: 4600041 doi: 10.1111/1462-2920.12874
Humphreys, S. et al. Role of the two-component regulator CpxAR in the virulence of Salmonella enterica serotype Typhimurium. Infect. Immun. 72, 4654–4661 (2004).
pubmed: 15271926 pmcid: 470642 doi: 10.1128/IAI.72.8.4654-4661.2004
Dorel, C., Vidal, O., Prigent-Combaret, C., Vallet, I. & Lejeune, P. Involvement of the Cpx signal transduction pathway of E. coli in biofilm formation. FEMS Microbiol. Lett. 178, 169–175 (1999).
pubmed: 10483736 doi: 10.1111/j.1574-6968.1999.tb13774.x
Spinola, S. M. et al. Activation of the CpxRA system by deletion of cpxA impairs the ability of Haemophilus ducreyi to infect humans. Infect. Immun. 78, 3898–3904 (2010).
pubmed: 20605985 pmcid: 2937468 doi: 10.1128/IAI.00432-10
Buelow, D. R. & Raivio, T. L. Cpx signal transduction is influenced by a conserved N-terminal domain in the novel inhibitor CpxP and the periplasmic protease DegP. J. Bacteriol. 187, 6622–6630 (2005).
pubmed: 16166523 pmcid: 1251582 doi: 10.1128/JB.187.19.6622-6630.2005
Tschauner, K., Hornschemeyer, P., Muller, V. S. & Hunke, S. Dynamic interaction between the CpxA sensor kinase and the periplasmic accessory protein CpxP mediates signal recognition in E. coli. PLoS One 9, e107383 (2014).
pubmed: 25207645 pmcid: 4160245 doi: 10.1371/journal.pone.0107383
Huang, L. et al. Phenotypic characterization, virulence, and immunogenicity of Pseudomonas plecoglossicida rpoE knock-down strain. Fish. Shellfish Immunol. 87, 772–777 (2019).
pubmed: 30776544 doi: 10.1016/j.fsi.2019.02.028
Bosse, J. T. et al. Regulation of pga operon expression and biofilm formation in Actinobacillus pleuropneumoniae by sigmaE and H-NS. J. Bacteriol. 192, 2414–2423 (2010).
pubmed: 20207760 pmcid: 2863473 doi: 10.1128/JB.01513-09
Korbsrisate, S. et al. The Burkholderia pseudomallei RpoE (AlgU) operon is involved in environmental stress tolerance and biofilm formation. FEMS Microbiol. Lett. 252, 243–249 (2005).
pubmed: 16185818 doi: 10.1016/j.femsle.2005.09.002
Heusipp, G., Schmidt, M. A. & Miller, V. L. Identification of rpoE and nadB as host responsive elements of Yersinia enterocolitica. FEMS Microbiol. Lett. 226, 291–298 (2003).
pubmed: 14553925 doi: 10.1016/S0378-1097(03)00613-X
Carlsson, K. E., Liu, J., Edqvist, P. J. & Francis, M. S. Extracytoplasmic-stress-responsive pathways modulate type III secretion in Yersinia pseudotuberculosis. Infect. Immun. 75, 3913–3924 (2007).
pubmed: 17517869 pmcid: 1951977 doi: 10.1128/IAI.01346-06
Palonen, E., Lindstrom, M., Somervuo, P. & Korkeala, H. Alternative sigma factor sigmaE has an important role in stress tolerance of Yersinia pseudotuberculosis IP32953. Appl. Environ. Microbiol. 79, 5970–5977 (2013).
pubmed: 23872565 pmcid: 3811379 doi: 10.1128/AEM.01891-13
Li, H. et al. The CpxA/CpxR Two-Component System Affects Biofilm Formation and Virulence in Actinobacillus pleuropneumoniae. Front. Cell Infect. Microbiol. 8, 72 (2018).
pubmed: 29662838 pmcid: 5890194 doi: 10.3389/fcimb.2018.00072
De Wulf, P., McGuire, A. M., Liu, X. & Lin, E. C. Genome-wide profiling of promoter recognition by the two-component response regulator CpxR-P in Escherichia coli. J. Biol. Chem. 277, 26652–26661 (2002).
pubmed: 11953442 doi: 10.1074/jbc.M203487200
Ronnebaumer, K., Sander, G., Shutinoski, B., Schmidt, M. A. & Heusipp, G. Controlled activation of the Cpx system is essential for growth of Yersinia enterocolitica. FEMS Microbiol. Lett. 296, 274–281 (2009).
pubmed: 19486159 doi: 10.1111/j.1574-6968.2009.01649.x
Yamamoto, K. & Ishihama, A. Characterization of copper-inducible promoters regulated by CpxA/CpxR in Escherichia coli. Biosci. Biotechnol. Biochem. 70, 1688–1695 (2006).
pubmed: 16861804 doi: 10.1271/bbb.60024
Karatan, E. & Watnick, P. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol. Mol. Biol. Rev. 73, 310–347 (2009).
pubmed: 19487730 pmcid: 2698413 doi: 10.1128/MMBR.00041-08
Karygianni, L., Ren, Z., Koo, H. & Thurnheer, T. Biofilm Matrixome: Extracellular Components in Structured Microbial Communities. Trends Microbiol. 28, 668–681 (2020).
doi: 10.1016/j.tim.2020.03.016 pubmed: 32663461
Ruhal, R. & Kataria, R. Biofilm patterns in gram-positive and gram-negative bacteria. Microbiol. Res. 251, 126829 (2021).
pubmed: 34332222 doi: 10.1016/j.micres.2021.126829
Calder, J. T., Christman, N. D., Hawkins, J. M., Erickson, D. L. A Trimeric Autotransporter Enhances Biofilm Cohesiveness in Yersinia pseudotuberculosis but Not in Yersinia pestis. J. Bacteriol. 202, 1–13 (2020).
Gengler, S., Laudisoit, A., Batoko, H. & Wattiau, P. Long-term persistence of Yersinia pseudotuberculosis in entomopathogenic nematodes. PLoS One 10, e0116818 (2015).
pubmed: 25635766 pmcid: 4312075 doi: 10.1371/journal.pone.0116818
Styer, K. L. et al. Yersinia pestis kills Caenorhabditis elegans by a biofilm-independent process that involves novel virulence factors. EMBO Rep. 6, 992–997 (2005).
pubmed: 16170309 pmcid: 1369189 doi: 10.1038/sj.embor.7400516
Schweer, J. et al. The cytotoxic necrotizing factor of Yersinia pseudotuberculosis (CNFY) enhances inflammation and Yop delivery during infection by activation of Rho GTPases. PLoS Pathog. 9, e1003746 (2013).
pubmed: 24244167 pmcid: 3820761 doi: 10.1371/journal.ppat.1003746
Gemski, P., Lazere, J. R., Casey, T. & Wohlhieter, J. A. Presence of a virulence-associated plasmid in Yersinia pseudotuberculosis. Infect. Immun. 28, 1044–1047 (1980).
pubmed: 6249747 pmcid: 551057 doi: 10.1128/iai.28.3.1044-1047.1980
Bolin, I., Norlander, L. & Wolf-Watz, H. Temperature-inducible outer membrane protein of Yersinia pseudotuberculosis and Yersinia enterocolitica is associated with the virulence plasmid. Infect. Immun. 37, 506–512 (1982).
pubmed: 6749681 pmcid: 347563 doi: 10.1128/iai.37.2.506-512.1982
Flamez, C., Ricard, I., Arafah, S., Simonet, M. & Marceau, M. Phenotypic analysis of Yersinia pseudotuberculosis 32777 response regulator mutants: new insights into two-component system regulon plasticity in bacteria. Int J. Med. Microbiol. 298, 193–207 (2008).
pubmed: 17765656 doi: 10.1016/j.ijmm.2007.05.005
Tidhar, A. et al. Disruption of the NlpD lipoprotein of the plague pathogen Yersinia pestis affects iron acquisition and the activity of the twin-arginine translocation system. PLoS Negl. Trop. Dis. 13, e0007449 (2019).
pubmed: 31170147 pmcid: 6553720 doi: 10.1371/journal.pntd.0007449
O’Loughlin, J. L., Spinner, J. L., Minnich, S. A. & Kobayashi, S. D. Yersinia pestis two-component gene regulatory systems promote survival in human neutrophils. Infect. Immun. 78, 773–782 (2010).
pubmed: 19933831 doi: 10.1128/IAI.00718-09
Leskinen, K., Varjosalo, M., Li, Z., Li, C. M. & Skurnik, M. Expression of the Yersinia enterocolitica O:3 LPS O-antigen and outer core gene clusters is RfaH-dependent. Microbiology 161, 1282–1294 (2015).
pubmed: 25767108 doi: 10.1099/mic.0.000076
Maxson, M. E. & Darwin, A. J. Identification of inducers of the Yersinia enterocolitica phage shock protein system and comparison to the regulation of the RpoE and Cpx extracytoplasmic stress responses. J. Bacteriol. 186, 4199–4208 (2004).
pubmed: 15205422 pmcid: 421588 doi: 10.1128/JB.186.13.4199-4208.2004
Bertani, G. Lysogeny at mid-twentieth century: P1, P2, and other experimental systems. J. Bacteriol. 186, 595–600 (2004).
pubmed: 14729683 pmcid: 321500 doi: 10.1128/JB.186.3.595-600.2004
Higuchi, R., Krummel, B. & Saiki, R. K. A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res. 16, 7351–7367 (1988).
pubmed: 3045756 pmcid: 338413 doi: 10.1093/nar/16.15.7351
Francis, M. S., Amer, A. A., Milton, D. L. & Costa, T. R. Site-Directed Mutagenesis and Its Application in Studying the Interactions of T3S Components. Methods Mol. Biol. 1531, 11–31 (2017).
pubmed: 27837478 doi: 10.1007/978-1-4939-6649-3_2
Lopez-Sanchez, A., Jimenez-Fernandez, A., Calero, P., Gallego, L. D. & Govantes, F. New methods for the isolation and characterization of biofilm-persistent mutants in Pseudomonas putida. Environ. Microbiol. Rep. 5, 679–685 (2013).
pubmed: 24115618
Girard, L. R. et al. WormBook: the online review of Caenorhabditis elegans biology. Nucleic Acids Res. 35, D472–D475 (2007). Database issue.
pubmed: 17099225 doi: 10.1093/nar/gkl894
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402–408 (2001).
pubmed: 11846609 doi: 10.1006/meth.2001.1262
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).
pubmed: 22930834 pmcid: 5554542 doi: 10.1038/nmeth.2089

Auteurs

Dharmender K Gahlot (DK)

Department of Molecular Biology, Umeå University, Umeå, Sweden. dharmender.kumar@umu.se.
Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden. dharmender.kumar@umu.se.

Sun N Wai (SN)

Department of Molecular Biology, Umeå University, Umeå, Sweden.
Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.
The Laboratory for Molecular Infection Medicine, Umeå University, Umeå, Sweden.

David L Erickson (DL)

Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA.

Matthew S Francis (MS)

Department of Molecular Biology, Umeå University, Umeå, Sweden. matthew.francis@umu.se.
Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden. matthew.francis@umu.se.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH