Adipocyte G
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
29 03 2022
29 03 2022
Historique:
received:
09
02
2021
accepted:
04
03
2022
entrez:
30
3
2022
pubmed:
31
3
2022
medline:
14
4
2022
Statut:
epublish
Résumé
Obesity is the major driver of the global epidemic in type 2 diabetes (T2D). In individuals with obesity, impaired insulin action leads to increased lipolysis in adipocytes, resulting in elevated plasma free fatty acid (FFA) levels that promote peripheral insulin resistance, a hallmark of T2D. Here we show, by using a combined genetic/biochemical/pharmacologic approach, that increased adipocyte lipolysis can be prevented by selective activation of adipocyte G
Identifiants
pubmed: 35351896
doi: 10.1038/s41467-022-29231-6
pii: 10.1038/s41467-022-29231-6
pmc: PMC8964770
doi:
Substances chimiques
Lipids
0
Glucose
IY9XDZ35W2
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1652Subventions
Organisme : CIHR
ID : 201709FDN-CEBA-116200
Pays : Canada
Informations de copyright
© 2022. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.
Références
Guilherme, A., Virbasius, J. V., Puri, V. & Czech, M. P. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat. Rev. Mol. Cell Biol. 9, 367–377 (2008).
pubmed: 18401346
pmcid: 2886982
doi: 10.1038/nrm2391
Kusminski, C. M., Bickel, P. E. & Scherer, P. E. Targeting adipose tissue in the treatment of obesity-associated diabetes. Nat. Rev. Drug Disco. 15, 639–660 (2016).
doi: 10.1038/nrd.2016.75
Scherer, P. E. The many secret lives of adipocytes: implications for diabetes. Diabetologia 62, 223–232 (2019).
pubmed: 30465066
doi: 10.1007/s00125-018-4777-x
Duncan, R. E., Ahmadian, M., Jaworski, K., Sarkadi-Nagy, E. & Sul, H. S. Regulation of lipolysis in adipocytes. Annu. Rev. Nutr. 27, 79–101 (2007).
pubmed: 17313320
pmcid: 2885771
doi: 10.1146/annurev.nutr.27.061406.093734
DeFronzo, R. A. et al. Type 2 diabetes mellitus. Nat. Rev. Dis. Prim. 1, 15019 (2015).
pubmed: 27189025
doi: 10.1038/nrdp.2015.19
Wang, L. et al. Use of DREADD Technology to Identify Novel Targets for Antidiabetic Drugs. Annu Rev. Pharm. Toxicol. 61, 421–440 (2021).
doi: 10.1146/annurev-pharmtox-030220-121042
Riddy, D. M., Delerive, P., Summers, R. J., Sexton, P. M. & Langmead, C. J. G Protein-Coupled Receptors Targeting Insulin Resistance, Obesity, and Type 2 Diabetes Mellitus. Pharm. Rev. 70, 39–67 (2018).
pubmed: 29233848
doi: 10.1124/pr.117.014373
Ahren, B. Islet G protein-coupled receptors as potential targets for treatment of type 2 diabetes. Nat. Rev. Drug Disco. 8, 369–385 (2009).
doi: 10.1038/nrd2782
Sriram, K. & Insel, P. A. G Protein-Coupled Receptors as Targets for Approved Drugs: How Many Targets and How Many Drugs? Mol. Pharm. 93, 251–258 (2018).
doi: 10.1124/mol.117.111062
Pierce, K. L., Premont, R. T. & Lefkowitz, R. J. Seven-transmembrane receptors. Nat. Rev. Mol. Cell Biol. 3, 639–650 (2002).
pubmed: 12209124
doi: 10.1038/nrm908
Amisten, S. et al. An atlas of G-protein coupled receptor expression and function in human subcutaneous adipose tissue. Pharm. Ther. 146, 61–93 (2015).
doi: 10.1016/j.pharmthera.2014.09.007
Regard, J. B., Sato, I. T. & Coughlin, S. R. Anatomical profiling of G protein-coupled receptor expression. Cell 135, 561–571 (2008).
pubmed: 18984166
pmcid: 2590943
doi: 10.1016/j.cell.2008.08.040
Wettschureck, N. & Offermanns, S. Mammalian G proteins and their cell type specific functions. Physiological Rev. 85, 1159–1204 (2005).
doi: 10.1152/physrev.00003.2005
Wang, L. et al. Adipocyte G(i) signaling is essential for maintaining whole-body glucose homeostasis and insulin sensitivity. Nat. Commun. 11, 2995 (2020).
pubmed: 32532984
pmcid: 7293267
doi: 10.1038/s41467-020-16756-x
Wang, L. et al. Selective activation of Gs signaling in adipocytes causes striking metabolic improvements in mice. Mol. Metab. 27, 83–91 (2019).
pubmed: 31272886
pmcid: 6717953
doi: 10.1016/j.molmet.2019.06.018
Caron, A. et al. Adipocyte Gs but not Gi signaling regulates whole-body glucose homeostasis. Mol. Metab. 27, 11–21 (2019).
pubmed: 31279640
pmcid: 6717754
doi: 10.1016/j.molmet.2019.06.019
Chaves, V. E., Frasson, D. & Kawashita, N. H. Several agents and pathways regulate lipolysis in adipocytes. Biochimie 93, 1631–1640 (2011).
pubmed: 21658426
doi: 10.1016/j.biochi.2011.05.018
Armbruster, B. N., Li, X., Pausch, M. H., Herlitze, S. & Roth, B. L. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc. Natl Acad. Sci. USA 104, 5163–5168 (2007).
pubmed: 17360345
pmcid: 1829280
doi: 10.1073/pnas.0700293104
Rogan, S. C. & Roth, B. L. Remote control of neuronal signaling. Pharm. Rev. 63, 291–315 (2011).
pubmed: 21415127
pmcid: 3082452
doi: 10.1124/pr.110.003020
Zhu, H. et al. Cre-dependent DREADD (Designer Receptors Exclusively Activated by Designer Drugs) mice. Genes. (N. Y., N. Y.: 2000) 54, 439–446 (2016).
doi: 10.1002/dvg.22949
Eguchi, J. et al. Transcriptional control of adipose lipid handling by IRF4. Cell Metab. 13, 249–259 (2011).
pubmed: 21356515
pmcid: 3063358
doi: 10.1016/j.cmet.2011.02.005
Nagai, Y. et al. Deschloroclozapine, a potent and selective chemogenetic actuator enables rapid neuronal and behavioral modulations in mice and monkeys. Nat. Neurosci. 23, 1157–1167 (2020).
pubmed: 32632286
doi: 10.1038/s41593-020-0661-3
Camporez, J. P. et al. Anti-inflammatory effects of oestrogen mediate the sexual dimorphic response to lipid-induced insulin resistance. J. Physiol. 597, 3885–3903 (2019).
pubmed: 31206703
doi: 10.1113/JP277270
Pettersson, U. S., Waldén, T. B., Carlsson, P. O., Jansson, L. & Phillipson, M. Female mice are protected against high-fat diet induced metabolic syndrome and increase the regulatory T cell population in adipose tissue. PLoS One 7, e46057 (2012).
pubmed: 23049932
pmcid: 3458106
doi: 10.1371/journal.pone.0046057
Taegtmeyer, H. Energy metabolism of the heart: from basic concepts to clinical applications. Curr. Probl. Cardiol. 19, 59–113 (1994).
pubmed: 8174388
doi: 10.1016/0146-2806(94)90008-6
Depre, C., Vanoverschelde, J. L. & Taegtmeyer, H. Glucose for the heart. Circulation 99, 578–588 (1999).
pubmed: 9927407
doi: 10.1161/01.CIR.99.4.578
Schrage, R. et al. The experimental power of FR900359 to study Gq-regulated biological processes. Nat. Commun. 6, 10156 (2015).
pubmed: 26658454
doi: 10.1038/ncomms10156
Yamaguchi, S. et al. Activators of AMP-activated protein kinase enhance GLUT4 translocation and its glucose transport activity in 3T3-L1 adipocytes. Am. J. Physiol. Endocrinol. Metab. 289, E643–E649 (2005).
pubmed: 15928020
doi: 10.1152/ajpendo.00456.2004
Haemmerle, G., Zimmermann, R. & Zechner, R. Letting lipids go: hormone-sensitive lipase. Curr. Opin. Lipido. 14, 289–297 (2003).
doi: 10.1097/00041433-200306000-00009
Nielsen, T. S., Jessen, N., Jørgensen, J. O., Møller, N. & Lund, S. Dissecting adipose tissue lipolysis: molecular regulation and implications for metabolic disease. J. Mol. Endocrinol. 52, R199–R222 (2014).
pubmed: 24577718
doi: 10.1530/JME-13-0277
Watt, M. J. & Steinberg, G. R. Regulation and function of triacylglycerol lipases in cellular metabolism. Biochem J. 414, 313–325 (2008).
pubmed: 18717647
doi: 10.1042/BJ20080305
Marcelo, K. L., Means, A. R. & York, B. The Ca(2+)/Calmodulin/CaMKK2 Axis: Nature’s Metabolic CaMshaft. Trends Endocrinol. Metab.: TEM 27, 706–718 (2016).
pubmed: 27449752
doi: 10.1016/j.tem.2016.06.001
Robidoux, J., Martin, T. L. & Collins, S. Beta-adrenergic receptors and regulation of energy expenditure: a family affair. Annu Rev. Pharm. Toxicol. 44, 297–323 (2004).
doi: 10.1146/annurev.pharmtox.44.101802.121659
Xue, R. et al. Clonal analyses and gene profiling identify genetic biomarkers of the thermogenic potential of human brown and white preadipocytes. Nat. Med. 21, 760–768 (2015).
pubmed: 26076036
pmcid: 4496292
doi: 10.1038/nm.3881
Collins, S. & Surwit, R. S. The beta-adrenergic receptors and the control of adipose tissue metabolism and thermogenesis. Recent Prog. Horm. Res. 56, 309–328 (2001).
pubmed: 11237219
doi: 10.1210/rp.56.1.309
Revelli, J. P., Muzzin, P., Paoloni, A., Moinat, M. & Giacobino, J. P. Expression of the beta 3-adrenergic receptor in human white adipose tissue. J. Mol. Endocrinol. 10, 193–197 (1993).
pubmed: 8387311
doi: 10.1677/jme.0.0100193
Mottillo, E. P. et al. Lack of adipocyte AMPK exacerbates insulin resistance and hepatic steatosis through brown and beige adipose tissue function. Cell Metab. 24, 118–129 (2016).
pubmed: 27411013
pmcid: 5239668
doi: 10.1016/j.cmet.2016.06.006
Wettschureck, N. et al. Absence of pressure overload induced myocardial hypertrophy after conditional inactivation of Galphaq/Galpha11 in cardiomyocytes. Nat. Med. 7, 1236–1240 (2001).
pubmed: 11689889
doi: 10.1038/nm1101-1236
Imamura, T. et al. G alpha-q/11 protein plays a key role in insulin-induced glucose transport in 3T3-L1 adipocytes. Mol. Cell. Biol. 19, 6765–6774 (1999).
pubmed: 10490615
pmcid: 84673
doi: 10.1128/MCB.19.10.6765
Pydi, S. P. et al. Adipocyte beta-arrestin-2 is essential for maintaining whole body glucose and energy homeostasis. Nat. Commun. 10, 2936 (2019).
pubmed: 31270323
pmcid: 6610117
doi: 10.1038/s41467-019-11003-4
Yan, D. et al. Differential signaling of cysteinyl leukotrienes and a novel cysteinyl leukotriene receptor 2 (CysLT
doi: 10.1124/mol.110.069054
Wunder, F. et al. Pharmacological characterization of the first potent and selective antagonist at the cysteinyl leukotriene 2 (CysLT(2)) receptor. Br. J. Pharmacol. 160, 399–409 (2010).
pubmed: 20423349
pmcid: 2874861
doi: 10.1111/j.1476-5381.2010.00730.x
Gastaldelli, A., Gaggini, M. & DeFronzo, R. A. Role of adipose tissue insulin resistance in the natural history of Type 2 Diabetes: Results from the San Antonio Metabolism Study. Diabetes 66, 815–822 (2017).
pubmed: 28052966
doi: 10.2337/db16-1167
Qiang, G. et al. Lipodystrophy and severe metabolic dysfunction in mice with adipose tissue-specific insulin receptor ablation. Mol. Metab. 5, 480–490 (2016).
pubmed: 27408774
pmcid: 4921803
doi: 10.1016/j.molmet.2016.05.005
Trinquet, E., Bouhelal, R. & Dietz, M. Monitoring Gq-coupled receptor response through inositol phosphate quantification with the IP-One assay. Expert Opin. Drug Disco. 6, 981–994 (2011).
doi: 10.1517/17460441.2011.608658
Moore, A. R. et al. Recurrent activating mutations of G-protein-coupled receptor CYSLTR2 in uveal melanoma. Nat. Genet 48, 675–680 (2016).
pubmed: 27089179
pmcid: 5032652
doi: 10.1038/ng.3549
Lawrence, J. T. & Birnbaum, M. J. ADP-ribosylation factor 6 delineates separate pathways used by endothelin 1 and insulin for stimulating glucose uptake in 3T3-L1 adipocytes. Mol. Cell. Biol. 21, 5276–5285 (2001).
pubmed: 11438681
pmcid: 87251
doi: 10.1128/MCB.21.15.5276-5285.2001
Kishi, K. et al. Gq-coupled receptors transmit the signal for GLUT4 translocation via an insulin-independent pathway. J. Biol. Chem. 271, 26561–26568 (1996).
pubmed: 8900127
doi: 10.1074/jbc.271.43.26561
Ali, S. B., Turner, J. J. O. & Fountain, S. J. Constitutive P2Y(2) receptor activity regulates basal lipolysis in human adipocytes. J. Cell Sci. 131, jcs221994 (2018).
pubmed: 30333139
doi: 10.1242/jcs.221994
Yue, P. et al. Apelin decreases lipolysis via G(q), G(i), and AMPK-dependent mechanisms. Endocrinology 152, 59–68 (2011).
pubmed: 21047945
doi: 10.1210/en.2010-0576
Kishi, K. et al. AMP-Activated protein kinase is activated by the stimulations of G(q)-coupled receptors. Biochemical biophysical Res. Commun. 276, 16–22 (2000).
doi: 10.1006/bbrc.2000.3417
Hutchinson, D. S. & Bengtsson, T. AMP-activated protein kinase activation by adrenoceptors in L6 skeletal muscle cells: mediation by alpha1-adrenoceptors causing glucose uptake. Diabetes 55, 682–690 (2006).
pubmed: 16505231
doi: 10.2337/diabetes.55.03.06.db05-0901
Kahn, B. B., Alquier, T., Carling, D. & Hardie, D. G. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 1, 15–25 (2005).
pubmed: 16054041
doi: 10.1016/j.cmet.2004.12.003
Sakamoto, K. & Holman, G. D. Emerging role for AS160/TBC1D4 and TBC1D1 in the regulation of GLUT4 traffic. Am. J. Physiol. Endocrinol. Metab. 295, E29–E37 (2008).
pubmed: 18477703
pmcid: 2493596
doi: 10.1152/ajpendo.90331.2008
Klepac, K. et al. The Gq signalling pathway inhibits brown and beige adipose tissue. Nat. Commun. 7, 10895 (2016).
pubmed: 26955961
pmcid: 4786868
doi: 10.1038/ncomms10895
Sassmann, A. et al. The Gq/G11-mediated signaling pathway is critical for autocrine potentiation of insulin secretion in mice. J. Clin. Invest 120, 2184–2193 (2010).
pubmed: 20440069
pmcid: 2877950
doi: 10.1172/JCI41541
Jain, S. et al. Chronic activation of a designer G(q)-coupled receptor improves beta cell function. J. Clin. Invest 123, 1750–1762 (2013).
pubmed: 23478411
pmcid: 3613926
doi: 10.1172/JCI66432
Kim, J. K., Gavrilova, O., Chen, Y., Reitman, M. L. & Shulman, G. I. Mechanism of insulin resistance in A-ZIP/F-1 fatless mice. J. Biol. Chem. 275, 8456–8460 (2000).
pubmed: 10722680
doi: 10.1074/jbc.275.12.8456
Bone, D. B. J. et al. Skeletal muscle-specific activation of Gq Signaling maintains glucose homeostasis. Diabetes 68, 1341–1352 (2019).
pubmed: 30936140
pmcid: 6610017
doi: 10.2337/db18-0796