Adipocyte G


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
29 03 2022
Historique:
received: 09 02 2021
accepted: 04 03 2022
entrez: 30 3 2022
pubmed: 31 3 2022
medline: 14 4 2022
Statut: epublish

Résumé

Obesity is the major driver of the global epidemic in type 2 diabetes (T2D). In individuals with obesity, impaired insulin action leads to increased lipolysis in adipocytes, resulting in elevated plasma free fatty acid (FFA) levels that promote peripheral insulin resistance, a hallmark of T2D. Here we show, by using a combined genetic/biochemical/pharmacologic approach, that increased adipocyte lipolysis can be prevented by selective activation of adipocyte G

Identifiants

pubmed: 35351896
doi: 10.1038/s41467-022-29231-6
pii: 10.1038/s41467-022-29231-6
pmc: PMC8964770
doi:

Substances chimiques

Lipids 0
Glucose IY9XDZ35W2

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1652

Subventions

Organisme : CIHR
ID : 201709FDN-CEBA-116200
Pays : Canada

Informations de copyright

© 2022. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.

Références

Guilherme, A., Virbasius, J. V., Puri, V. & Czech, M. P. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat. Rev. Mol. Cell Biol. 9, 367–377 (2008).
pubmed: 18401346 pmcid: 2886982 doi: 10.1038/nrm2391
Kusminski, C. M., Bickel, P. E. & Scherer, P. E. Targeting adipose tissue in the treatment of obesity-associated diabetes. Nat. Rev. Drug Disco. 15, 639–660 (2016).
doi: 10.1038/nrd.2016.75
Scherer, P. E. The many secret lives of adipocytes: implications for diabetes. Diabetologia 62, 223–232 (2019).
pubmed: 30465066 doi: 10.1007/s00125-018-4777-x
Duncan, R. E., Ahmadian, M., Jaworski, K., Sarkadi-Nagy, E. & Sul, H. S. Regulation of lipolysis in adipocytes. Annu. Rev. Nutr. 27, 79–101 (2007).
pubmed: 17313320 pmcid: 2885771 doi: 10.1146/annurev.nutr.27.061406.093734
DeFronzo, R. A. et al. Type 2 diabetes mellitus. Nat. Rev. Dis. Prim. 1, 15019 (2015).
pubmed: 27189025 doi: 10.1038/nrdp.2015.19
Wang, L. et al. Use of DREADD Technology to Identify Novel Targets for Antidiabetic Drugs. Annu Rev. Pharm. Toxicol. 61, 421–440 (2021).
doi: 10.1146/annurev-pharmtox-030220-121042
Riddy, D. M., Delerive, P., Summers, R. J., Sexton, P. M. & Langmead, C. J. G Protein-Coupled Receptors Targeting Insulin Resistance, Obesity, and Type 2 Diabetes Mellitus. Pharm. Rev. 70, 39–67 (2018).
pubmed: 29233848 doi: 10.1124/pr.117.014373
Ahren, B. Islet G protein-coupled receptors as potential targets for treatment of type 2 diabetes. Nat. Rev. Drug Disco. 8, 369–385 (2009).
doi: 10.1038/nrd2782
Sriram, K. & Insel, P. A. G Protein-Coupled Receptors as Targets for Approved Drugs: How Many Targets and How Many Drugs? Mol. Pharm. 93, 251–258 (2018).
doi: 10.1124/mol.117.111062
Pierce, K. L., Premont, R. T. & Lefkowitz, R. J. Seven-transmembrane receptors. Nat. Rev. Mol. Cell Biol. 3, 639–650 (2002).
pubmed: 12209124 doi: 10.1038/nrm908
Amisten, S. et al. An atlas of G-protein coupled receptor expression and function in human subcutaneous adipose tissue. Pharm. Ther. 146, 61–93 (2015).
doi: 10.1016/j.pharmthera.2014.09.007
Regard, J. B., Sato, I. T. & Coughlin, S. R. Anatomical profiling of G protein-coupled receptor expression. Cell 135, 561–571 (2008).
pubmed: 18984166 pmcid: 2590943 doi: 10.1016/j.cell.2008.08.040
Wettschureck, N. & Offermanns, S. Mammalian G proteins and their cell type specific functions. Physiological Rev. 85, 1159–1204 (2005).
doi: 10.1152/physrev.00003.2005
Wang, L. et al. Adipocyte G(i) signaling is essential for maintaining whole-body glucose homeostasis and insulin sensitivity. Nat. Commun. 11, 2995 (2020).
pubmed: 32532984 pmcid: 7293267 doi: 10.1038/s41467-020-16756-x
Wang, L. et al. Selective activation of Gs signaling in adipocytes causes striking metabolic improvements in mice. Mol. Metab. 27, 83–91 (2019).
pubmed: 31272886 pmcid: 6717953 doi: 10.1016/j.molmet.2019.06.018
Caron, A. et al. Adipocyte Gs but not Gi signaling regulates whole-body glucose homeostasis. Mol. Metab. 27, 11–21 (2019).
pubmed: 31279640 pmcid: 6717754 doi: 10.1016/j.molmet.2019.06.019
Chaves, V. E., Frasson, D. & Kawashita, N. H. Several agents and pathways regulate lipolysis in adipocytes. Biochimie 93, 1631–1640 (2011).
pubmed: 21658426 doi: 10.1016/j.biochi.2011.05.018
Armbruster, B. N., Li, X., Pausch, M. H., Herlitze, S. & Roth, B. L. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc. Natl Acad. Sci. USA 104, 5163–5168 (2007).
pubmed: 17360345 pmcid: 1829280 doi: 10.1073/pnas.0700293104
Rogan, S. C. & Roth, B. L. Remote control of neuronal signaling. Pharm. Rev. 63, 291–315 (2011).
pubmed: 21415127 pmcid: 3082452 doi: 10.1124/pr.110.003020
Zhu, H. et al. Cre-dependent DREADD (Designer Receptors Exclusively Activated by Designer Drugs) mice. Genes. (N. Y., N. Y.: 2000) 54, 439–446 (2016).
doi: 10.1002/dvg.22949
Eguchi, J. et al. Transcriptional control of adipose lipid handling by IRF4. Cell Metab. 13, 249–259 (2011).
pubmed: 21356515 pmcid: 3063358 doi: 10.1016/j.cmet.2011.02.005
Nagai, Y. et al. Deschloroclozapine, a potent and selective chemogenetic actuator enables rapid neuronal and behavioral modulations in mice and monkeys. Nat. Neurosci. 23, 1157–1167 (2020).
pubmed: 32632286 doi: 10.1038/s41593-020-0661-3
Camporez, J. P. et al. Anti-inflammatory effects of oestrogen mediate the sexual dimorphic response to lipid-induced insulin resistance. J. Physiol. 597, 3885–3903 (2019).
pubmed: 31206703 doi: 10.1113/JP277270
Pettersson, U. S., Waldén, T. B., Carlsson, P. O., Jansson, L. & Phillipson, M. Female mice are protected against high-fat diet induced metabolic syndrome and increase the regulatory T cell population in adipose tissue. PLoS One 7, e46057 (2012).
pubmed: 23049932 pmcid: 3458106 doi: 10.1371/journal.pone.0046057
Taegtmeyer, H. Energy metabolism of the heart: from basic concepts to clinical applications. Curr. Probl. Cardiol. 19, 59–113 (1994).
pubmed: 8174388 doi: 10.1016/0146-2806(94)90008-6
Depre, C., Vanoverschelde, J. L. & Taegtmeyer, H. Glucose for the heart. Circulation 99, 578–588 (1999).
pubmed: 9927407 doi: 10.1161/01.CIR.99.4.578
Schrage, R. et al. The experimental power of FR900359 to study Gq-regulated biological processes. Nat. Commun. 6, 10156 (2015).
pubmed: 26658454 doi: 10.1038/ncomms10156
Yamaguchi, S. et al. Activators of AMP-activated protein kinase enhance GLUT4 translocation and its glucose transport activity in 3T3-L1 adipocytes. Am. J. Physiol. Endocrinol. Metab. 289, E643–E649 (2005).
pubmed: 15928020 doi: 10.1152/ajpendo.00456.2004
Haemmerle, G., Zimmermann, R. & Zechner, R. Letting lipids go: hormone-sensitive lipase. Curr. Opin. Lipido. 14, 289–297 (2003).
doi: 10.1097/00041433-200306000-00009
Nielsen, T. S., Jessen, N., Jørgensen, J. O., Møller, N. & Lund, S. Dissecting adipose tissue lipolysis: molecular regulation and implications for metabolic disease. J. Mol. Endocrinol. 52, R199–R222 (2014).
pubmed: 24577718 doi: 10.1530/JME-13-0277
Watt, M. J. & Steinberg, G. R. Regulation and function of triacylglycerol lipases in cellular metabolism. Biochem J. 414, 313–325 (2008).
pubmed: 18717647 doi: 10.1042/BJ20080305
Marcelo, K. L., Means, A. R. & York, B. The Ca(2+)/Calmodulin/CaMKK2 Axis: Nature’s Metabolic CaMshaft. Trends Endocrinol. Metab.: TEM 27, 706–718 (2016).
pubmed: 27449752 doi: 10.1016/j.tem.2016.06.001
Robidoux, J., Martin, T. L. & Collins, S. Beta-adrenergic receptors and regulation of energy expenditure: a family affair. Annu Rev. Pharm. Toxicol. 44, 297–323 (2004).
doi: 10.1146/annurev.pharmtox.44.101802.121659
Xue, R. et al. Clonal analyses and gene profiling identify genetic biomarkers of the thermogenic potential of human brown and white preadipocytes. Nat. Med. 21, 760–768 (2015).
pubmed: 26076036 pmcid: 4496292 doi: 10.1038/nm.3881
Collins, S. & Surwit, R. S. The beta-adrenergic receptors and the control of adipose tissue metabolism and thermogenesis. Recent Prog. Horm. Res. 56, 309–328 (2001).
pubmed: 11237219 doi: 10.1210/rp.56.1.309
Revelli, J. P., Muzzin, P., Paoloni, A., Moinat, M. & Giacobino, J. P. Expression of the beta 3-adrenergic receptor in human white adipose tissue. J. Mol. Endocrinol. 10, 193–197 (1993).
pubmed: 8387311 doi: 10.1677/jme.0.0100193
Mottillo, E. P. et al. Lack of adipocyte AMPK exacerbates insulin resistance and hepatic steatosis through brown and beige adipose tissue function. Cell Metab. 24, 118–129 (2016).
pubmed: 27411013 pmcid: 5239668 doi: 10.1016/j.cmet.2016.06.006
Wettschureck, N. et al. Absence of pressure overload induced myocardial hypertrophy after conditional inactivation of Galphaq/Galpha11 in cardiomyocytes. Nat. Med. 7, 1236–1240 (2001).
pubmed: 11689889 doi: 10.1038/nm1101-1236
Imamura, T. et al. G alpha-q/11 protein plays a key role in insulin-induced glucose transport in 3T3-L1 adipocytes. Mol. Cell. Biol. 19, 6765–6774 (1999).
pubmed: 10490615 pmcid: 84673 doi: 10.1128/MCB.19.10.6765
Pydi, S. P. et al. Adipocyte beta-arrestin-2 is essential for maintaining whole body glucose and energy homeostasis. Nat. Commun. 10, 2936 (2019).
pubmed: 31270323 pmcid: 6610117 doi: 10.1038/s41467-019-11003-4
Yan, D. et al. Differential signaling of cysteinyl leukotrienes and a novel cysteinyl leukotriene receptor 2 (CysLT
doi: 10.1124/mol.110.069054
Wunder, F. et al. Pharmacological characterization of the first potent and selective antagonist at the cysteinyl leukotriene 2 (CysLT(2)) receptor. Br. J. Pharmacol. 160, 399–409 (2010).
pubmed: 20423349 pmcid: 2874861 doi: 10.1111/j.1476-5381.2010.00730.x
Gastaldelli, A., Gaggini, M. & DeFronzo, R. A. Role of adipose tissue insulin resistance in the natural history of Type 2 Diabetes: Results from the San Antonio Metabolism Study. Diabetes 66, 815–822 (2017).
pubmed: 28052966 doi: 10.2337/db16-1167
Qiang, G. et al. Lipodystrophy and severe metabolic dysfunction in mice with adipose tissue-specific insulin receptor ablation. Mol. Metab. 5, 480–490 (2016).
pubmed: 27408774 pmcid: 4921803 doi: 10.1016/j.molmet.2016.05.005
Trinquet, E., Bouhelal, R. & Dietz, M. Monitoring Gq-coupled receptor response through inositol phosphate quantification with the IP-One assay. Expert Opin. Drug Disco. 6, 981–994 (2011).
doi: 10.1517/17460441.2011.608658
Moore, A. R. et al. Recurrent activating mutations of G-protein-coupled receptor CYSLTR2 in uveal melanoma. Nat. Genet 48, 675–680 (2016).
pubmed: 27089179 pmcid: 5032652 doi: 10.1038/ng.3549
Lawrence, J. T. & Birnbaum, M. J. ADP-ribosylation factor 6 delineates separate pathways used by endothelin 1 and insulin for stimulating glucose uptake in 3T3-L1 adipocytes. Mol. Cell. Biol. 21, 5276–5285 (2001).
pubmed: 11438681 pmcid: 87251 doi: 10.1128/MCB.21.15.5276-5285.2001
Kishi, K. et al. Gq-coupled receptors transmit the signal for GLUT4 translocation via an insulin-independent pathway. J. Biol. Chem. 271, 26561–26568 (1996).
pubmed: 8900127 doi: 10.1074/jbc.271.43.26561
Ali, S. B., Turner, J. J. O. & Fountain, S. J. Constitutive P2Y(2) receptor activity regulates basal lipolysis in human adipocytes. J. Cell Sci. 131, jcs221994 (2018).
pubmed: 30333139 doi: 10.1242/jcs.221994
Yue, P. et al. Apelin decreases lipolysis via G(q), G(i), and AMPK-dependent mechanisms. Endocrinology 152, 59–68 (2011).
pubmed: 21047945 doi: 10.1210/en.2010-0576
Kishi, K. et al. AMP-Activated protein kinase is activated by the stimulations of G(q)-coupled receptors. Biochemical biophysical Res. Commun. 276, 16–22 (2000).
doi: 10.1006/bbrc.2000.3417
Hutchinson, D. S. & Bengtsson, T. AMP-activated protein kinase activation by adrenoceptors in L6 skeletal muscle cells: mediation by alpha1-adrenoceptors causing glucose uptake. Diabetes 55, 682–690 (2006).
pubmed: 16505231 doi: 10.2337/diabetes.55.03.06.db05-0901
Kahn, B. B., Alquier, T., Carling, D. & Hardie, D. G. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 1, 15–25 (2005).
pubmed: 16054041 doi: 10.1016/j.cmet.2004.12.003
Sakamoto, K. & Holman, G. D. Emerging role for AS160/TBC1D4 and TBC1D1 in the regulation of GLUT4 traffic. Am. J. Physiol. Endocrinol. Metab. 295, E29–E37 (2008).
pubmed: 18477703 pmcid: 2493596 doi: 10.1152/ajpendo.90331.2008
Klepac, K. et al. The Gq signalling pathway inhibits brown and beige adipose tissue. Nat. Commun. 7, 10895 (2016).
pubmed: 26955961 pmcid: 4786868 doi: 10.1038/ncomms10895
Sassmann, A. et al. The Gq/G11-mediated signaling pathway is critical for autocrine potentiation of insulin secretion in mice. J. Clin. Invest 120, 2184–2193 (2010).
pubmed: 20440069 pmcid: 2877950 doi: 10.1172/JCI41541
Jain, S. et al. Chronic activation of a designer G(q)-coupled receptor improves beta cell function. J. Clin. Invest 123, 1750–1762 (2013).
pubmed: 23478411 pmcid: 3613926 doi: 10.1172/JCI66432
Kim, J. K., Gavrilova, O., Chen, Y., Reitman, M. L. & Shulman, G. I. Mechanism of insulin resistance in A-ZIP/F-1 fatless mice. J. Biol. Chem. 275, 8456–8460 (2000).
pubmed: 10722680 doi: 10.1074/jbc.275.12.8456
Bone, D. B. J. et al. Skeletal muscle-specific activation of Gq Signaling maintains glucose homeostasis. Diabetes 68, 1341–1352 (2019).
pubmed: 30936140 pmcid: 6610017 doi: 10.2337/db18-0796

Auteurs

Takefumi Kimura (T)

Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA.
Department of Medicine, Division of Gastroenterology and hepatology, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan.

Sai P Pydi (SP)

Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA.

Lei Wang (L)

Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA.

Dhanush Haspula (D)

Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA.

Yinghong Cui (Y)

Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA.

Huiyan Lu (H)

Mouse Transgenic Core Facility, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA.

Gabriele M König (GM)

Institute of Pharmaceutical Biology, University of Bonn, 53115, Bonn, Germany.

Evi Kostenis (E)

Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, 53115, Bonn, Germany.

Gregory R Steinberg (GR)

Center for Metabolism, Obesity and Diabetes Research, Department of Medicine and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8K 4P1, Canada.

Oksana Gavrilova (O)

Mouse Metabolism Core National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA.

Jürgen Wess (J)

Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA. jurgenw@niddk.nih.gov.

Articles similaires

Humans Meals Time Factors Female Adult
Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH