Crystal substrate inhibition during microbial transformation of phytosterols in Pickering emulsions.
Crystal substrate inhibition
Microbial transformation
Phytosterols
Pickering emulsion
Journal
Applied microbiology and biotechnology
ISSN: 1432-0614
Titre abrégé: Appl Microbiol Biotechnol
Pays: Germany
ID NLM: 8406612
Informations de publication
Date de publication:
Apr 2022
Apr 2022
Historique:
received:
16
02
2022
accepted:
19
03
2022
revised:
11
03
2022
pubmed:
31
3
2022
medline:
12
4
2022
entrez:
30
3
2022
Statut:
ppublish
Résumé
Water-oil interface of bacterial cell-stabilized Pickering emulsions is an exceptional habitat for microbial assimilation of both hydrophobic nutrients solubilized in oil phase and hydrophilic ones solubilized in water phase. Crystal substrate inhibition, i.e., decreasing phytosterol degradation with the increase loading of crystal phytosterols, is always observed during microbial transformation of phytosterols into steroid synthons in Mycolicibacterium sp (China Center of Industrial Culture Collection, CICC 21,097) cell-stabilized Pickering emulsions. In the present work, we confirmed that crystal substrate inhibition was attributed to the interaction between M. neoaurum and phytosterol crystals that led to the detachment of bacterial cells from the oil-water interfaces in bacterial cell-stabilized Pickering emulsions. Under the selected operation condition (25 ml BEHP per 40 ml water, 60 g/L glucose, 25 g/L phytosterols), the product androst-4-ene-3, 17-dione (AD) and androsta-1, 4-dien-3, 17-dione (ADD) concentration increased linearly with the progress of microbial transformation and reached almost 6 g/L at the 11
Identifiants
pubmed: 35352152
doi: 10.1007/s00253-022-11889-z
pii: 10.1007/s00253-022-11889-z
doi:
Substances chimiques
Emulsions
0
Phytosterols
0
Water
059QF0KO0R
Chitosan
9012-76-4
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2403-2414Subventions
Organisme : Innovative Research Group Project of the National Natural Science Foundation of China
ID : 22178218
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Abbasi A, Bothun GD, Bose A (2018) Attachment of Alcanivorax borkumensis to hexadecane-in-artificial sea water emulsion droplets. Langmuir 34:5352–5357
doi: 10.1021/acs.langmuir.8b00082
Aono R, Kobayshi H (1997) Cell surface properties of organic solvent-tolerant mutants of Escherichia coli K-12. Appl Environ Microbiol 63(9):3637–3642
doi: 10.1128/aem.63.9.3637-3642.1997
Binks BP, Philip J, Rodrigues JA (2005) Inversion of silica-stabilized emulsions induced by particle concentration. Langmuir 21:3296–3302
doi: 10.1021/la046915z
Binks BP, Fletcher PDI, Holt BL, Beaussoubre P, Wong K (2010) Phase inversion of particle-stabilised perfume oil-water emulsions: experiment and theory. Phys Chem Chem Phys 12:11954–11966
doi: 10.1039/c0cp00558d
Bouchez-Naitali M, Vandecasteele J-P (2008) Biosurfactants, an help in the biodegradation of hexadecane? The case of Rhodococcus and Pseudomonas strains. World J Microbiol Biotechnol 24:1901–1907
doi: 10.1007/s11274-008-9691-9
Chang F, Vis CM, Ciptonugroho W, Bruijnincx PCA (2021) Recent developments in catalysis with Pickering emulsions. Green Chem 23:2575–2594
doi: 10.1039/D0GC03604H
Chen D-Z, Jiang N-X, Ye J-X, Cheng Z-W, Zhang S-H, Chen J-M (2017) Comparative investigation on a hexane-degrading strain with different cell surface hydrophobicities mediated by starch and chitosan. Appl Microbiol Biotechnol 101:3829–3837
doi: 10.1007/s00253-017-8100-4
Collins J, Grund M, Brandenbusch C, Sadowski G, Schmid A, Bühler B (2015) The dynamic influence of cells on the formation of stable emulsions in organic-aqueous biotransformations. J Ind Microbiol Biotechnol 42:1011–1026
doi: 10.1007/s10295-015-1621-x
Cruz A, Fernandes P, Cabral JMS, Pinheiro HM (2001) Whole-cell bioconversion of β-sitosterol in aqueous-organic two-phase systems. J Mol Catal B 11:579–585
doi: 10.1016/S1381-1177(00)00047-3
Cruz A, Angelova B, Fernandes P, Cabral JMS, Pinheiro HM (2004) Study of key operational parameters for the side-chain cleavage of sitosterol by free Mycobacterial cells in bis-(2-ethylhexyl) phthalate. Biocatal Biotransf 22(3):189–194
doi: 10.1080/10242420412331283297
Donova MV, Dovbnya DV, Koshcheyenko KA (1996) Modified CDs-mediated enhancement of microbial sterol-side-chain degradation. Proceedings of the Eighth International Symposium on Cyclodextrin, 527-530
Gao X, Feng J, Hua Q, Wei D, Wang X (2014) Investigation of factors affecting biotransformation of phytosterols to 9-hydroxyandrost-4-ene-3, 17-dione based on the HP-β-CD-resting cells reaction system. Biocatal Biotransf 32:343–347
doi: 10.3109/10242422.2014.976633
Goetschel R, Bar R (1992) Formation of mixed crystals in microbial conversion of sterols and steroids. Enzyme Microb Technol 14:462–469
doi: 10.1016/0141-0229(92)90138-E
Gupta RS, Lo B, Son J (2018) Phylogenomics and comparative genomic studies robustly support division of the genus Mycobacterium into an emended genus Mycobacterium and four novel genera. Front Microbiol 9:67. https://doi.org/10.3389/fmicb.2018.00067
doi: 10.3389/fmicb.2018.00067
pubmed: 29497402
pmcid: 5819568
Hao Y, Hao S, Li Q, Liu X, Zou H, Yang H (2021) Metal-nanoparticles-loaded ultrathin g-C3N4 nanosheets at liquid-liquid interfaces for enhanced biphasic catalysis. ACS Appl Mater Interf 13:47236–47243
doi: 10.1021/acsami.1c13903
He K, Sun H, Song H (2018) Engineering phytosterol transport system in Mycobacterium sp. strain MS136 enhances production of 9a-hydroxy-4-androstene-3, 17-dione. Biotechnol Lett 40:673–678
doi: 10.1007/s10529-018-2520-9
Heipieper HJ, Neumann G, Cornelissen S, Meinhardt F (2007) Solvent-tolerant bacteria for biotransformation in two-phase fermentation systems. Appl Microbiol Biotechnol 74:961–973
doi: 10.1007/s00253-006-0833-4
Honda K, Yamashita S, Nakagawa H, Sameshima Y, Omasa T, Kato J, Ohtake H (2008) Stabilization of water-in-oil emulsion by Rhodococcus opacus B-4 and its application to biotransformation. Appl Microbiol Biotechnol 78:767–773
doi: 10.1007/s00253-008-1378-5
Jia X, Zhang S, Li J, Xia J, Yao R, Zhao X, Wu B, Bai F, Xiao Y (2020) Engineered bacterial biofloc formation enhancing phenol removal and cell tolerance. Appl Microbiol Biotechnol 104:1187–1199
doi: 10.1007/s00253-019-10289-0
Jiang H, Liu L, Li Y, Yin S, Ngai T (2020) Inverse Pickering emulsion stabilized by binary particles with contrasting characteristics and functionality for interfacial biocatalysis. ACS Appl Mater Interf 12:4989–4997
doi: 10.1021/acsami.9b16117
MacLeod CT, Daugulis AJ (2005) Interfacial effects in a two-phase partitioning bioreactor: degradation of polycyclic aromatic hydrocarbons (PAHs) by a hydrophobic Mycobacterium. Process Biochem 40:1799–1805
doi: 10.1016/j.procbio.2004.06.042
Nallamilli T, Binks BP, Mani E, Basavaraj MG (2015) Stabilization of Pickering emulsions with oppositely charged latex particles: influence of various parameters and particle arrangement around droplets. Langmuir 31:11200–11208
doi: 10.1021/acs.langmuir.5b02443
Phase N, Patil S (1994) Natural oils are better than organic solvents for the conversion of soybean sterols to 17-ketosteroids by Mycobacterium fortuitum. World J Microbiol Biotechnol 10:228–229
doi: 10.1007/BF00360894
Pickering SU (1907) CXCVI-emulsions. J Chem Soc Trans 91:2001–2021
doi: 10.1039/CT9079102001
Rattanaburi P, Charoenrat N, Pongtharangkul T, Suphantharika M, Wongkongkatep J (2019) Hydroxypropyl methylcellulose enhances the stability of O/W Pickering emulsions stabilized with chitosan and the whole cells of Lactococcus lactis IO-1. Food Research Intern 116:559–565
doi: 10.1016/j.foodres.2018.08.074
Rodriguez AMB, Binks BP (2020) Catalysis in Pickering emulsions. Soft Matter 16:10221–10243
doi: 10.1039/D0SM01636E
Saha A, John VT, Bose A (2015) In situ assembly of hydrophilic and hydrophobic nanoparticles at oil-water interfaces as a versatile strategy to form stable emulsions. ACS Appl Mater Interf 7:21010–21014
doi: 10.1021/acsami.5b06940
Stefanov S, Yankov D, Beschkov V (2006) Biotransformation of phytosterols to androstenedione in two phase water-oil systems. Chem Biochem Eng Q 20(4):421–427
Su L, Xu S, Shen Y, Xia M, Ren X, Wang L, Shang Z, Wang M (2020) The sterol carrier hydroxypropyl-β-cyclodextrin enhances the metabolism of phytosterols by Mycobacterium neoaurum. Appl Environ Microbiol 86:e00441-e520. https://doi.org/10.1128/AEM.00441-20
doi: 10.1128/AEM.00441-20
pubmed: 32414803
pmcid: 7376554
Sun W-J, Liu Y-J, Liu H-H, Ma J-D, Ren Y-H, Wang F-Q, Wei D-Z (2019) Enhanced conversion of sterols to steroid synthons by augmenting the peptidoglycan synthesis gene pbpB in Mycobacterium neoaurum. J Basic Microbiol 59:924–935
doi: 10.1002/jobm.201900159
Sun H, Yang J, He K, Wang Y-P, Song H (2021) Enhancing production of 9a-hydroxy-androst-4-ene-3, 17-dione (9-OHAD) from phytosterols by metabolic pathway engineering of Mycobacteria. Chem Eng Sci 230:116195
doi: 10.1016/j.ces.2020.116195
Tao S, Jiang H, Wang R, Yang C, Li Y, Ngai T (2020) Ultra-stable Pickering emulsion stabilized by a natural particle bilayer. Chem Comm 56:14011–14014
doi: 10.1039/D0CC05690A
Wang Z, Dai Z (2010) Extractive microbial fermentation in cloud point system. Enzyme Microb Technol 46:407–418
doi: 10.1016/j.enzmictec.2010.02.004
Wang Z, van Oers MCM, Rutjes FPJT, van Hest JCM (2012) Polymersome colloidosomes for enzyme catalysis in a biphasic system. Angew Chem Int Ed 51:10746–10750
doi: 10.1002/anie.201206555
Wang H, Song S, Peng F, Yang F, Chen T, Li X, Cheng X, He Y, Huang Y, Su Z (2020) Whole-genome and enzymatic analyses of an androstenedione-producing Mycobacterium strain with residual phytosterol-degrading pathways. Microb Cell Fact 19:187. https://doi.org/10.1186/s12934-020-01442-w
doi: 10.1186/s12934-020-01442-w
pubmed: 33008397
pmcid: 7532642
Whitby CP, Parthipan R (2019) Influence of particle concentration on multiple droplet formation in Pickering emulsions. J Colloid Interf Sci 554:315–323
doi: 10.1016/j.jcis.2019.07.017
Wongkongkatep P, Manopwisedjaroen K, Tiposoth P, Archakunakorn S, Pongtharangkul T, Suphantharika M, Honda K, Hamachi I, Wongkongkatep J (2012) Bacteria interface Pickering emulsions stabilized by self-assembled bacteria-chitosan network. Langmuir 28:5729–5736
doi: 10.1021/la300660x
Xie H, Zhao W, Ali DC, Zhang X, Wang Z (2021) Interfacial biocatalysis in bacteria-stabilized Pickering emulsions for microbial transformation of hydrophobic chemicals. Catal Sci Technol 11:2816–2826
doi: 10.1039/D0CY02243H
Xiong L-B, Liu H-H, Song X-W, Meng X-G, Liu X-Z, Ji Y-Q, Wang F-Q, Wei D-Z (2020) Improving the biotransformation of phytosterols to 9α-hydroxy-4-androstene-3, 17-dione by deleting embC associated with the assembly of cell envelope in Mycobacterium neoaurum. J Biotechnol 323:341–346
doi: 10.1016/j.jbiotec.2020.09.019
Xiong L-B, Liu H-H, Zhao M, Liu Y-J, Song L, Xie Z-Y, Xu Y-X, Wang F-Q, Wei D-Z (2020) Enhancing the bioconversion of phytosterols to steroidal intermediates by the defciency of kasB in the cell wall synthesis of Mycobacterium neoaurum. Microb Cell Fact 19:80. https://doi.org/10.1186/s12934-020-01335-y
doi: 10.1186/s12934-020-01335-y
pubmed: 32228591
pmcid: 7106593
Xu Y-G, Guan Y-X, Wang H-Q, Yao S-J (2014) Microbial side-chain cleavage of phytosterols by Mycobacteria in vegetable oil/aqueous two-phase system. Appl Biochem Biotechnol 174:522–533
doi: 10.1007/s12010-014-1082-0