Ultralight Iontronic Triboelectric Mechanoreceptor with High Specific Outputs for Epidermal Electronics.

Epidermal electronics Iontronic Power density Triboelectric mechanoreceptor Ultralight

Journal

Nano-micro letters
ISSN: 2150-5551
Titre abrégé: Nanomicro Lett
Pays: Germany
ID NLM: 101727940

Informations de publication

Date de publication:
29 Mar 2022
Historique:
received: 09 12 2021
accepted: 01 03 2022
entrez: 30 3 2022
pubmed: 31 3 2022
medline: 31 3 2022
Statut: epublish

Résumé

The pursuit to mimic skin exteroceptive ability has motivated the endeavors for epidermal artificial mechanoreceptors. Artificial mechanoreceptors are required to be highly sensitive to capture imperceptible skin deformations and preferably to be self-powered, breathable, lightweight and deformable to satisfy the prolonged wearing demands. It is still struggling to achieve these traits in single device, as it remains difficult to minimize device architecture without sacrificing the sensitivity or stability. In this article, we present an all-fiber iontronic triboelectric mechanoreceptor (ITM) to fully tackle these challenges, enabled by the high-output mechano-to-electrical energy conversion. The proposed ITM is ultralight, breathable and stretchable and is quite stable under various mechanical deformations. On the one hand, the ITM can achieve a superior instantaneous power density; on the other hand, the ITM shows excellent sensitivity serving as epidermal sensors. Precise health status monitoring is readily implemented by the ITM calibrating by detecting vital signals and physical activities of human bodies. The ITM can also realize acoustic-to-electrical conversion and distinguish voices from different people, and biometric application as a noise dosimeter is demonstrated. The ITM therefore is believed to open new sights in epidermal electronics and skin prosthesis fields.

Identifiants

pubmed: 35352206
doi: 10.1007/s40820-022-00834-4
pii: 10.1007/s40820-022-00834-4
pmc: PMC8964870
doi:

Types de publication

Journal Article

Langues

eng

Pagination

86

Informations de copyright

© 2022. The Author(s).

Références

Nature. 2014 Dec 11;516(7530):222-6
pubmed: 25503234
RSC Adv. 2020 May 6;10(30):17752-17759
pubmed: 35515611
Nanoscale. 2021 May 7;13(17):8304-8312
pubmed: 33899842
Sci Adv. 2020 Jun 26;6(26):eaba9624
pubmed: 32637619
iScience. 2020 Jul 24;23(7):101286
pubmed: 32622264
Adv Mater. 2020 Aug;32(32):e2002878
pubmed: 32596980
Sci Robot. 2018 Sep 19;3(22):
pubmed: 33141753
Nat Commun. 2020 Dec 3;11(1):6186
pubmed: 33273477
Nat Commun. 2014 Sep 03;5:4779
pubmed: 25182939
Adv Mater. 2020 Sep;32(35):e1904020
pubmed: 31617274
Sci Adv. 2020 Aug 12;6(33):eabb7043
pubmed: 32851182
Sci Adv. 2015 Oct 30;1(9):e1500701
pubmed: 26601309
ACS Nano. 2017 Aug 22;11(8):7608-7614
pubmed: 28700205
Nat Commun. 2013;4:1859
pubmed: 23673644
Nat Mater. 2016 Sep;15(9):937-50
pubmed: 27376685
Adv Mater. 2015 Jan 27;27(4):634-40
pubmed: 25358966
Am J Hypertens. 2005 Jan;18(1 Pt 2):3S-10S
pubmed: 15683725
Nat Rev Cardiol. 2021 Jan;18(1):7-21
pubmed: 32895536
Nat Commun. 2020 Jul 15;11(1):3537
pubmed: 32669555
Sci Adv. 2017 May 31;3(5):e1700015
pubmed: 28580425
Nat Commun. 2018 Jan 16;9(1):244
pubmed: 29339793
Sci Adv. 2015 Oct 30;1(9):e1500661
pubmed: 26601303
Sci Robot. 2018 Nov 21;3(24):
pubmed: 33141713
Adv Mater. 2017 Sep;29(36):
pubmed: 28758264
Small. 2020 Jan;16(2):e1906352
pubmed: 31814245
Nature. 2018 Sep;561(7724):516-521
pubmed: 30258137
Science. 2017 Aug 25;357(6353):773-778
pubmed: 28839068
Nat Mater. 2015 Oct;14(10):1032-9
pubmed: 26301766
Nat Commun. 2016 Mar 23;7:11108
pubmed: 27005010
Nat Commun. 2020 Oct 23;11(1):5381
pubmed: 33097696
Nat Commun. 2018 May 4;9(1):1804
pubmed: 29728600
Nat Commun. 2018 Oct 15;9(1):4280
pubmed: 30323200
Sci Adv. 2020 Sep 30;6(40):
pubmed: 32998888
Sci Adv. 2021 Feb 12;7(7):
pubmed: 33579699
Sci Robot. 2018 Jul 25;3(20):
pubmed: 33141730
Nature. 2016 Jan 28;529(7587):509-514
pubmed: 26819044

Auteurs

Hai Lu Wang (HL)

Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China.

Zi Hao Guo (ZH)

Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China.
School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.

Xiong Pu (X)

Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China. puxiong@binn.cas.cn.
School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China. puxiong@binn.cas.cn.
Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, People's Republic of China. puxiong@binn.cas.cn.
CUSTech Institute of Technology, Wenzhou, 325024, Zhejiang, People's Republic of China. puxiong@binn.cas.cn.

Zhong Lin Wang (ZL)

Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China. zhong.wang@mse.gatech.edu.
School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China. zhong.wang@mse.gatech.edu.
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA. zhong.wang@mse.gatech.edu.

Classifications MeSH