Finetuning Hole-Extracting Monolayers for Efficient Organic Solar Cells.
3PACz
hole-transport layer
monolayer
nonfullerene acceptor
organic solar cells
Journal
ACS applied materials & interfaces
ISSN: 1944-8252
Titre abrégé: ACS Appl Mater Interfaces
Pays: United States
ID NLM: 101504991
Informations de publication
Date de publication:
13 Apr 2022
13 Apr 2022
Historique:
pubmed:
31
3
2022
medline:
31
3
2022
entrez:
30
3
2022
Statut:
ppublish
Résumé
Interface layers used for electron transport (ETL) and hole transport (HTL) often significantly enhance the performance of organic solar cells (OSCs). Surprisingly, interface engineering for hole extraction has received little attention thus far. By finetuning the chemical structure of carbazole-based self-assembled monolayers with phosphonic acid anchoring groups, varying the length of the alkane linker (2PACz, 3PACz, and 4PACz), these HTLs were found to perform favorably in OSCs. Compared to archetypal PEDOT:PSS, the PACz monolayers exhibit higher optical transmittance and lower resistance and deliver a higher short-circuit current density and fill factor. Power conversion efficiencies of 17.4% have been obtained with PM6:BTP-eC9 as the active layer, which was distinctively higher than the 16.2% obtained with PEDOT:PSS. Of the three PACz derivatives, the new 3PACz consistently outperforms the other two monolayer HTLs in OSCs with different state-of-the-art nonfullerene acceptors. Considering its facile synthesis, convenient processing, and improved performance, we consider that 3PACz is a promising interface layer for widespread use in OSCs.
Identifiants
pubmed: 35352932
doi: 10.1021/acsami.2c01900
pmc: PMC9011343
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
16497-16504Références
Adv Mater. 2021 Oct;33(41):e2102420
pubmed: 34464466
ACS Nano. 2014 Jan 28;8(1):243-9
pubmed: 24341785
ChemSusChem. 2021 Sep 6;14(17):3569-3578
pubmed: 33928763
Adv Mater. 2020 May;32(19):e1908205
pubmed: 32227399
Nat Commun. 2020 Jun 1;11(1):2726
pubmed: 32483159
J Am Chem Soc. 2016 Apr 6;138(13):4657-64
pubmed: 26997357
Acc Chem Res. 2012 May 15;45(5):723-33
pubmed: 22288572
Adv Mater. 2019 Nov;31(46):e1902965
pubmed: 31566264
Nature. 2019 Sep;573(7774):394-397
pubmed: 31501570
Acc Chem Res. 2015 Nov 17;48(11):2803-12
pubmed: 26505279
Science. 2020 Dec 11;370(6522):1300-1309
pubmed: 33303611
J Am Chem Soc. 2015 Jun 10;137(22):6995-8
pubmed: 26016386
Soft Matter. 2016 Jun 21;12(23):5146-53
pubmed: 27194365
Chem Rev. 2016 Jun 22;116(12):7397-457
pubmed: 27251307
Acc Chem Res. 2014 May 20;47(5):1595-603
pubmed: 24773564
Angew Chem Int Ed Engl. 2021 Apr 12;60(16):8813-8817
pubmed: 33682269
Adv Mater. 2021 Apr;33(14):e2008429
pubmed: 33656220
J Am Chem Soc. 2014 Jul 9;136(27):9608-18
pubmed: 24932575
J Am Chem Soc. 2013 Oct 16;135(41):15326-9
pubmed: 24088142
J Am Chem Soc. 2017 May 31;139(21):7148-7151
pubmed: 28513158
Adv Mater. 2020 Mar;32(11):e1907604
pubmed: 32022965
J Am Chem Soc. 2020 Aug 26;142(34):14532-14547
pubmed: 32698577
ACS Appl Mater Interfaces. 2020 Mar 4;12(9):10626-10636
pubmed: 32030970
Chem Rev. 2015 Dec 9;115(23):12666-731
pubmed: 26252903