Using Machine Learning to Identify Organ System Specific Limitations to Exercise via Cardiopulmonary Exercise Testing.
Journal
IEEE journal of biomedical and health informatics
ISSN: 2168-2208
Titre abrégé: IEEE J Biomed Health Inform
Pays: United States
ID NLM: 101604520
Informations de publication
Date de publication:
08 2022
08 2022
Historique:
pubmed:
31
3
2022
medline:
16
8
2022
entrez:
30
3
2022
Statut:
ppublish
Résumé
Cardiopulmonary Exer cise Testing (CPET) is a unique physiologic medical test used to evaluate human response to progressive maximal exercise stress. Depending on the degree and type of deviation from the normal physiologic response, CPET can help identify a patient's specific limitations to exercise to guide clinical care without the need for other expensive and invasive diagnostic tests. However, given the amount and complexity of data obtained from CPET, interpretation and visualization of test results is challenging. CPET data currently require dedicated training and significant experience for proper clinician interpretation. To make CPET more accessible to clinicians, we investigated a simplified data interpretation and visualization tool using machine learning algorithms. The visualization shows three types of limitations (cardiac, pulmonary and others); values are defined based on the results of three independent random forest classifiers. To display the models' scores and make them interpretable to the clinicians, an interactive dashboard with the scores and interpretability plots was developed. This machine learning platform has the potential to augment existing diagnostic procedures and provide a tool to make CPET more accessible to clinicians.
Identifiants
pubmed: 35353709
doi: 10.1109/JBHI.2022.3163402
pmc: PMC9512518
mid: NIHMS1829655
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
4228-4237Subventions
Organisme : NIA NIH HHS
ID : R03 AG067949
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR002553
Pays : United States
Références
Heart. 2007 Oct;93(10):1285-92
pubmed: 17890705
Chest. 2004 Jan;125(1):1-3
pubmed: 14718408
Sci Rep. 2017 Sep 7;7(1):10929
pubmed: 28883532
Heart. 2002 Sep;88(3):239-43
pubmed: 12181213
Ther Umsch. 2009 Sep;66(9):665-9
pubmed: 19725012
Eur Respir J. 2009 Feb;33(2):389-97
pubmed: 18768575
J Chem Inf Comput Sci. 2003 Nov-Dec;43(6):1947-58
pubmed: 14632445
Healthcare (Basel). 2021 Feb 01;9(2):
pubmed: 33535510
J Am Heart Assoc. 2012 Jun;1(3):e001883
pubmed: 23130146
J Card Fail. 2009 Nov;15(9):756-62
pubmed: 19879461
Eur J Sport Sci. 2019 Oct;19(9):1221-1229
pubmed: 30880591
Ann Am Thorac Soc. 2017 Jul;14(Supplement_1):S3-S11
pubmed: 28510504
Curr Sports Med Rep. 2021 Oct 1;20(10):545-552
pubmed: 34622820
Circulation. 2010 Jul 13;122(2):191-225
pubmed: 20585013
Eur J Sport Sci. 2022 Mar;22(3):425-435
pubmed: 33331795
Circ Heart Fail. 2018 Aug;11(8):e005193
pubmed: 30354561
Circulation. 2005 Sep 20;112(12):e154-235
pubmed: 16160202
Circulation. 2012 Oct 30;126(18):2261-74
pubmed: 22952317
Ann Am Thorac Soc. 2017 Jul;14(Supplement_1):S12-S21
pubmed: 28541745
J Am Coll Cardiol. 2001 Jan;37(1):153-6
pubmed: 11153730
Circulation. 2016 Jun 14;133(24):e694-711
pubmed: 27143685
Pulm Med. 2021 May 31;2021:5516248
pubmed: 34158976