Abiotic factors modulate interspecies competition mediated by the type VI secretion system effectors in Vibrio cholerae.


Journal

The ISME journal
ISSN: 1751-7370
Titre abrégé: ISME J
Pays: England
ID NLM: 101301086

Informations de publication

Date de publication:
07 2022
Historique:
received: 27 05 2021
accepted: 17 03 2022
revised: 08 03 2022
pubmed: 1 4 2022
medline: 24 6 2022
entrez: 31 3 2022
Statut: ppublish

Résumé

Vibrio cholerae, the etiological pathogen of cholera, employs its type VI secretion system (T6SS) as an effective weapon to survive in highly competitive communities. Antibacterial and anti-eukaryotic functions of the T6SS depend on its secreted effectors that target multiple cellular processes. However, the mechanisms that account for effector diversity and different effectiveness during interspecies competition remain elusive. Here we report that environmental cations and temperature play a key role in dictating cellular response and effector effectiveness during interspecies competition mediated by the T6SS of V. cholerae. We found that V. cholerae could employ its cell-wall-targeting effector TseH to outcompete the otherwise resistant Escherichia coli and the V. cholerae immunity deletion mutant ∆tsiH when Mg

Identifiants

pubmed: 35354946
doi: 10.1038/s41396-022-01228-5
pii: 10.1038/s41396-022-01228-5
pmc: PMC9213406
doi:

Substances chimiques

Bacterial Proteins 0
Type VI Secretion Systems 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1765-1775

Subventions

Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 31770082
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 32030001

Informations de copyright

© 2022. The Author(s), under exclusive licence to International Society for Microbial Ecology.

Références

Chassaing B, Cascales E. Antibacterial weapons: targeted destruction in the microbiota. Trends Microbiol. 2018;26:329–38.
pubmed: 29452951 doi: 10.1016/j.tim.2018.01.006
Aoki SK, Pamma R, Hernday AD, Bickham JE, Braaten BA, Low DA. Microbiology: contact-dependent inhibition of growth in Escherichia coli. Science. 2005;309:1245–8.
pubmed: 16109881 doi: 10.1126/science.1115109
Taylor NMI, van Raaij MJ, Leiman PG. Contractile injection systems of bacteriophages and related systems. Mol Microbiol. 2018;108:6–15.
pubmed: 29405518 doi: 10.1111/mmi.13921
Kohanski MA, Dwyer DJ, Collins JJ. How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol. 2010;8:423–35.
pubmed: 20440275 pmcid: 2896384 doi: 10.1038/nrmicro2333
Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D, Nelson WC, et al. Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci USA. 2006;103:1528–33.
pubmed: 16432199 pmcid: 1345711 doi: 10.1073/pnas.0510322103
Mougous JD, Cuff ME, Raunser S, Shen A, Zhou M, Gifford CA, et al. A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science. 2006;312:1526–30.
pubmed: 16763151 pmcid: 2800167 doi: 10.1126/science.1128393
Bingle LE, Bailey CM, Pallen MJ. Type VI secretion: a beginner’s guide. Curr Opin Microbiol. 2008;11:3–8.
pubmed: 18289922 doi: 10.1016/j.mib.2008.01.006
Basler M, Pilhofer M, Henderson GP, Jensen GJ, Mekalanos JJ. Type VI secretion requires a dynamic contractile phage tail-like structure. Nature. 2012;483:182–6.
pubmed: 22367545 pmcid: 3527127 doi: 10.1038/nature10846
Durand E, Nguyen VS, Zoued A, Logger L, Péhau-Arnaudet G, Aschtgen MS, et al. Biogenesis and structure of a type VI secretion membrane core complex. Nature. 2015;523:555–60.
pubmed: 26200339 doi: 10.1038/nature14667
Zoued A, Durand E, Brunet YR, Spinelli S, Douzi B, Guzzo M, et al. Priming and polymerization of a bacterial contractile tail structure. Nature. 2016;531:59–63.
pubmed: 26909579 doi: 10.1038/nature17182
Kudryashev M, Wang RYR, Brackmann M, Scherer S, Maier T, Baker D, et al. Structure of the type VI secretion system contractile sheath. Cell. 2015;160:952–62.
pubmed: 25723169 pmcid: 4359589 doi: 10.1016/j.cell.2015.01.037
Shneider MM, Buth SA, Ho BT, Basler M, Mekalanos JJ, Leiman PG. PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature. 2013;500:350–3.
pubmed: 23925114 pmcid: 3792578 doi: 10.1038/nature12453
Pukatzki S, Ma AT, Revel AT, Sturtevant D, Mekalanos JJ. Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci USA. 2007;104:15508–13.
pubmed: 17873062 pmcid: 2000545 doi: 10.1073/pnas.0706532104
Leiman PG, Basler M, Ramagopal UA, Bonanno JB, Sauder JM, Pukatzki S, et al. Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc Natl Acad Sci USA. 2009;106:4154–9.
pubmed: 19251641 pmcid: 2657435 doi: 10.1073/pnas.0813360106
Vettiger A, Basler M. Type VI secretion system substrates are transferred and reused among sister cells. Cell. 2016;167:99–110.e12.
pubmed: 27616061 doi: 10.1016/j.cell.2016.08.023
Ho BT, Fu Y, Dong TG, Mekalanos JJ. Vibrio cholerae type 6 secretion system effector trafficking in target bacterial cells. Proc Natl Acad Sci USA. 2017;114:9427–32.
pubmed: 28808000 pmcid: 5584461 doi: 10.1073/pnas.1711219114
Liang X, Kamal F, Pei TT, Xu P, Mekalanos JJ, Dong TG. An onboard checking mechanism ensures effector delivery of the type VI secretion system in Vibrio cholerae. Proc Natl Acad Sci USA. 2019;116:23292–8.
pubmed: 31659021 pmcid: 6859309 doi: 10.1073/pnas.1914202116
Hersch SJ, Watanabe N, Stietz MS, Manera K, Kamal F, Burkinshaw B, et al. Envelope stress responses defend against type six secretion system attacks independently of immunity proteins. Nat Microbiol. 2020;5:706–14.
pubmed: 32094588 pmcid: 7190449 doi: 10.1038/s41564-020-0672-6
Kamal F, Liang X, Manera K, Pei TT, Kim H, Lam LG, et al. Differential cellular response to translocated toxic effectors and physical penetration by the type VI secretion system. Cell Rep. 2020;31:107766.
pubmed: 32553162 doi: 10.1016/j.celrep.2020.107766
Hersch SJ, Manera K, Dong TG. Defending against the type six secretion system: beyond immunity genes. Cell Rep. 2020;33:108259.
pubmed: 33053336 doi: 10.1016/j.celrep.2020.108259
Hood RD, Singh P, Hsu FS, Güvener T, Carl MA, Trinidad RRS, et al. A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe. 2010;7:25–37.
pubmed: 20114026 pmcid: 2831478 doi: 10.1016/j.chom.2009.12.007
Miyata ST, Unterweger D, Rudko SP, Pukatzki S. Dual expression profile of type VI secretion system immunity genes protects pandemic Vibrio cholerae. PLoS Pathog. 2013;9:e1003752.
pubmed: 24348240 pmcid: 3857813 doi: 10.1371/journal.ppat.1003752
Koskiniemi S, Lamoureux JG, Nikolakakis KC, De Roodenbeke CTK, Kaplan MD, Low DA, et al. Rhs proteins from diverse bacteria mediate intercellular competition. Proc Natl Acad Sci USA. 2013;110:7032–7.
pubmed: 23572593 pmcid: 3637788 doi: 10.1073/pnas.1300627110
Whitney JC, Quentin D, Sawai S, LeRoux M, Harding BN, Ledvina HE, et al. An interbacterial NAD(P)
pubmed: 26456113 pmcid: 4624332 doi: 10.1016/j.cell.2015.09.027
Ting SY, Bosch DE, Mangiameli SM, Radey MC, Huang S, Park YJ, et al. Bifunctional immunity proteins protect bacteria against FtsZ-targeting ADP-ribosylating toxins. Cell. 2018;175:1380–92.e14.
pubmed: 30343895 pmcid: 6239978 doi: 10.1016/j.cell.2018.09.037
Ahmad S, Wang B, Walker MD, Tran HKR, Stogios PJ, Savchenko A, et al. An interbacterial toxin inhibits target cell growth by synthesizing (p)ppApp. Nature. 2019;575:674–8.
pubmed: 31695193 pmcid: 6883173 doi: 10.1038/s41586-019-1735-9
Russell AB, Hood RD, Bui NK, Leroux M, Vollmer W, Mougous JD. Type VI secretion delivers bacteriolytic effectors to target cells. Nature. 2011;475:343–9.
pubmed: 21776080 pmcid: 3146020 doi: 10.1038/nature10244
Brooks TM, Unterweger D, Bachmann V, Kostiuk B, Pukatzki S. Lytic activity of the Vibrio cholerae type VI secretion toxin VgrG-3 is inhibited by the antitoxin TsaB. J Biol Chem. 2013;288:7618–25.
pubmed: 23341465 pmcid: 3597803 doi: 10.1074/jbc.M112.436725
Dong TG, Ho BT, Yoder-Himes DR, Mekalanos JJ. Identification of T6SS-dependent effector and immunity proteins by Tn-seq in Vibrio cholerae. Proc Natl Acad Sci. 2013;110:2623–8.
pubmed: 23362380 pmcid: 3574944 doi: 10.1073/pnas.1222783110
Sikdar R, Simmons AR, Doerrler WT. Multiple envelope stress response pathways are activated in an Escherichia coli strain with mutations in two members of the DedA membrane protein family. J Bacteriol. 2013;195:12–24.
pubmed: 23042993 pmcid: 3536178 doi: 10.1128/JB.00762-12
Toska J, Ho BT, Mekalanos JJ. Exopolysaccharide protects Vibrio cholerae from exogenous attacks by the type 6 secretion system. Proc Natl Acad Sci USA. 2018;115:7997–8002.
pubmed: 30021850 pmcid: 6077691 doi: 10.1073/pnas.1808469115
Dong TG, Dong S, Catalano C, Moore R, Liang X, Mekalanos JJ. Generation of reactive oxygen species by lethal attacks from competing microbes. Proc Natl Acad Sci USA. 2015;112:2181–6.
pubmed: 25646446 pmcid: 4343105 doi: 10.1073/pnas.1425007112
Storey D, McNally A, Åstrand M, Santos JPG, Rodriguez-Escudero I, Elmore B, et al. Klebsiella pneumoniae type VI secretion system-mediated microbial competition is PhoPQ controlled and reactive oxygen species dependent. PLoS Pathog. 2020;16:e1007969.
pubmed: 32191774 pmcid: 7108748 doi: 10.1371/journal.ppat.1007969
Wong MJQ, Liang X, Smart M, Tang L, Moore R, Ingalls B, et al. Microbial herd protection mediated by antagonistic interaction in polymicrobial communities. Appl Environ Microbiol. 2016;82:6881–8.
pubmed: 27637882 pmcid: 5103087 doi: 10.1128/AEM.02210-16
Borenstein DB, Ringel P, Basler M, Wingreen NS. Established microbial colonies can survive type VI secretion assault. PLoS Comput Biol. 2015;11:e1004520.
pubmed: 26485125 pmcid: 4619000 doi: 10.1371/journal.pcbi.1004520
McNally L, Bernardy E, Thomas J, Kalziqi A, Pentz J, Brown SP, et al. Killing by type VI secretion drives genetic phase separation and correlates with increased cooperation. Nat Commun. 2017;8:14371.
pubmed: 28165005 pmcid: 5303878 doi: 10.1038/ncomms14371
Cardarelli L, Saak C, Gibbs KA. Two proteins form a heteromeric bacterial self-recognition complex in which variable subdomains determine allele-restricted binding. mBio. 2015;6:e00251.
pubmed: 26060269 pmcid: 4471559 doi: 10.1128/mBio.00251-15
Smith WPJ, Vettiger A, Winter J, Ryser T, Comstock LE, Basler M, et al. The evolution of the type VI secretion system as a disintegration weapon. PLoS Biol. 2020; 18:e3000720.
pubmed: 32453732 pmcid: 7274471 doi: 10.1371/journal.pbio.3000720
Russell AB, Peterson SB, Mougous JD. Type VI secretion system effectors: poisons with a purpose. Nat Rev Microbiol. 2014;12:137–48.
pubmed: 24384601 pmcid: 4256078 doi: 10.1038/nrmicro3185
Ho BT, Dong TG, Mekalanos JJ. A view to a kill: the bacterial type VI secretion system. Cell Host Microbe. 2014;15:9–21.
pubmed: 24332978 doi: 10.1016/j.chom.2013.11.008
Jurėnas D, Journet L. Activity, delivery, and diversity of type VI secretion effectors. Mol Microbiol. 2021;115:383–94.
pubmed: 33217073 doi: 10.1111/mmi.14648
LaCourse KD, Peterson SB, Kulasekara HD, Radey MC, Kim J, Mougous JD. Conditional toxicity and synergy drive diversity among antibacterial effectors. Nat Microbiol. 2018;3:440–6.
pubmed: 29459733 pmcid: 5876133 doi: 10.1038/s41564-018-0113-y
Altindis E, Dong T, Catalano C, Mekalanos J. Secretome analysis of Vibrio cholerae type VI secretion system reveals a new effector-immunity pair. mBio. 2015;6:e00075–15.
pubmed: 25759499 pmcid: 4453574 doi: 10.1128/mBio.00075-15
Clemens JD, Nair GB, Ahmed T, Qadri F, Holmgren J. Cholera. Lancet. 2017;390:1539–49.
pubmed: 28302312 doi: 10.1016/S0140-6736(17)30559-7
Nelson EJ, Harris JB, Morris JG, Calderwood SB, Camilli A. Cholera transmission: the host, pathogen and bacteriophage dynamic. Nat Rev Microbiol. 2009;7:693–702.
pubmed: 19756008 doi: 10.1038/nrmicro2204
MacIntyre DL, Miyata ST, Kitaoka M, Pukatzki S. The Vibrio cholerae type VI secretion system displays antimicrobial properties. Proc Natl Acad Sci USA. 2010;107:19520–4.
pubmed: 20974937 pmcid: 2984155 doi: 10.1073/pnas.1012931107
Borgeaud S, Metzger LC, Scrignari T, Blokesch M. The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer. Science. 2015;347:63–7.
pubmed: 25554784 doi: 10.1126/science.1260064
Fu Y, Waldor MK, Mekalanos JJ. Tn-seq analysis of Vibrio cholerae intestinal colonization reveals a role for T6SS-mediated antibacterial activity in the host. Cell Host Microbe. 2013;14:652–63.
pubmed: 24331463 pmcid: 3951154 doi: 10.1016/j.chom.2013.11.001
Kostiuk B, Santoriello FJ, Dhody AN, Provenzano D, Diaz-satizabal L, Bisaro F, et al. Type VI secretion system mutations reduced competitive fitness of classical Vibrio cholerae biotype. Nat Commun. 2021;12:6457.
pubmed: 34753930 pmcid: 8578542 doi: 10.1038/s41467-021-26847-y
García Véscovi E, Soncini FC, Groisman EA. Mg
pubmed: 8548821 doi: 10.1016/S0092-8674(00)81003-X
Miyata ST, Kitaoka M, Brooks TM, McAuley SB, Pukatzki S. Vibrio cholerae requires the type VI secretion system virulence factor VasX to kill Dictyostelium discoideum. Infect Immun. 2011;79:2941–9.
pubmed: 21555399 pmcid: 3191968 doi: 10.1128/IAI.01266-10
Kato A, Tanabe H, Utsumi R. Molecular characterization of the PhoP-PhoQ two-component system in Escherichia coli K-12: Identification of extracellular Mg
pubmed: 10464230 pmcid: 94065 doi: 10.1128/JB.181.17.5516-5520.1999
Minagawa S, Ogasawara H, Kato A, Yamamoto K, Eguchi Y, Oshima T, et al. Identification and molecular characterization of the Mg
pubmed: 12813061 pmcid: 161583 doi: 10.1128/JB.185.13.3696-3702.2003
Gunn JS, Hohmann EL. Transcriptional regulation of Salmonella virulence: a PhoQ periplasmic domain mutation results in increased net phosphotransfer to PhoP. J Bacteriol. 1996;178:6369–73.
pubmed: 8892844 pmcid: 178515 doi: 10.1128/jb.178.21.6369-6373.1996
Minagawa S, Okura R, Tsuchitani H, Hirao K, Yamamoto K, Utsumi R. Isolation and molecular characterization of the locked-on mutant of Mg
pubmed: 16041131 doi: 10.1271/bbb.69.1281
Soncini FC, Véscovi EG, Solomon F, Groisman EA. Molecular basis of the magnesium deprivation response in Salmonella typhimurium: identification of PhoP-regulated genes. J Bacteriol. 1996;178:5092–9.
pubmed: 8752324 pmcid: 178303 doi: 10.1128/jb.178.17.5092-5099.1996
Véscovi EG, Ayala YM, Cera ED, Groisman EA. Characterization of the bacterial sensor protein PhoQ: evidence for distinct binding sites for Mg
pubmed: 8999810 doi: 10.1074/jbc.272.3.1440
Pontes MH, Sevostyanova A, Groisman EA. When too much ATP is bad for protein synthesis. J Mol Biol. 2015;427:2586–94.
pubmed: 26150063 pmcid: 4531837 doi: 10.1016/j.jmb.2015.06.021
Groisman EA, Hollands K, Kriner MA, Lee EJ, Park SY, Pontes MH. Bacterial Mg
pubmed: 24079267 pmcid: 4059682 doi: 10.1146/annurev-genet-051313-051025
Smith RJ. Calcium and bacteria. Adv Micro Physiol. 1995;37:83–133.
doi: 10.1016/S0065-2911(08)60144-7
Dominguez DC. Calcium signalling in bacteria. Mol Microbiol. 2004;54:291–7.
pubmed: 15469503 doi: 10.1111/j.1365-2958.2004.04276.x
Gangola P, Rosen BP. Maintenance of intracellular calcium in Escherichia coli. J Biol Chem. 1987;262:12570–4.
pubmed: 2442165 doi: 10.1016/S0021-9258(18)45243-X
Dalebroux ZD, Matamouros S, Whittington D, Bishop RE, Miller SI. PhoPQ regulates acidic glycerophospholipid content of the Salmonella Typhimurium outer membrane. Proc Natl Acad Sci USA. 2014;111:1963–8.
pubmed: 24449881 pmcid: 3918827 doi: 10.1073/pnas.1316901111
Needham BD, Trent MS. Fortifying the barrier: the impact of lipid A remodelling on bacterial pathogenesis. Nat Rev Microbiol. 2013;11:467–81.
pubmed: 23748343 pmcid: 6913092 doi: 10.1038/nrmicro3047
Murata T, Tseng W, Guina T, Miller SI, Nikaido H. PhoPQ-mediated regulation produces a more robust permeability barrier in the outer membrane of Salmonella enterica serovar typhimurium. J Bacteriol. 2007;189:7213–22.
pubmed: 17693506 pmcid: 2168427 doi: 10.1128/JB.00973-07
Alteri CJ, Lindner JR, Reiss DJ, Smith SN, Mobley HLT. The broadly conserved regulator PhoP links pathogen virulence and membrane potential in Escherichia coli. Mol Microbiol. 2011;82:145–63.
pubmed: 21854465 pmcid: 3188958 doi: 10.1111/j.1365-2958.2011.07804.x
Dalebroux ZD, Miller SI. Salmonellae PhoPQ regulation of the outer membrane to resist innate immunity. Curr Opin Microbiol. 2014;17:106–13.
pubmed: 24531506 pmcid: 4043142 doi: 10.1016/j.mib.2013.12.005
Rojas ER, Billings G, Odermatt PD, Auer GK, Zhu L, Miguel A, et al. The outer membrane is an essential load-bearing element in Gram-negative bacteria. Nature. 2018;559:617–21.
pubmed: 30022160 pmcid: 6089221 doi: 10.1038/s41586-018-0344-3
Yu M, Wang YC, Huang CJ, Ma LS, Lai EM. Agrobacterium tumefaciens deploys a versatile antibacterial strategy to increase its competitiveness. J Bacteriol. 2022;203:e00490–20.
Crisan CV, Nichols HL, Wiesenfeld S, Steinbach G, Yunker PJ, Hammer BK. Glucose confers protection to Escherichia coli against contact killing by Vibrio cholerae. Sci Rep. 2021;11:2935.
pubmed: 33536444 pmcid: 7858629 doi: 10.1038/s41598-021-81813-4
Bachmann V, Kostiuk B, Unterweger D, Diaz-Satizabal L, Ogg S, Pukatzki S. Bile salts modulate the mucin-activated type VI secretion system of pandemic Vibrio cholerae. PLoS Negl Trop Dis. 2015;9:e0004031.
pubmed: 26317760 pmcid: 4552747 doi: 10.1371/journal.pntd.0004031

Auteurs

Ming-Xuan Tang (MX)

State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.

Tong-Tong Pei (TT)

State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.

Qi Xiang (Q)

School of Medicine, Southern University of Science and Technology, Shenzhen, China.

Zeng-Hang Wang (ZH)

State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.

Han Luo (H)

State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.

Xing-Yu Wang (XY)

State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.

Yang Fu (Y)

School of Medicine, Southern University of Science and Technology, Shenzhen, China.

Tao Dong (T)

State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China. dongt@sustech.edu.cn.
Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China. dongt@sustech.edu.cn.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH