Abiotic factors modulate interspecies competition mediated by the type VI secretion system effectors in Vibrio cholerae.
Journal
The ISME journal
ISSN: 1751-7370
Titre abrégé: ISME J
Pays: England
ID NLM: 101301086
Informations de publication
Date de publication:
07 2022
07 2022
Historique:
received:
27
05
2021
accepted:
17
03
2022
revised:
08
03
2022
pubmed:
1
4
2022
medline:
24
6
2022
entrez:
31
3
2022
Statut:
ppublish
Résumé
Vibrio cholerae, the etiological pathogen of cholera, employs its type VI secretion system (T6SS) as an effective weapon to survive in highly competitive communities. Antibacterial and anti-eukaryotic functions of the T6SS depend on its secreted effectors that target multiple cellular processes. However, the mechanisms that account for effector diversity and different effectiveness during interspecies competition remain elusive. Here we report that environmental cations and temperature play a key role in dictating cellular response and effector effectiveness during interspecies competition mediated by the T6SS of V. cholerae. We found that V. cholerae could employ its cell-wall-targeting effector TseH to outcompete the otherwise resistant Escherichia coli and the V. cholerae immunity deletion mutant ∆tsiH when Mg
Identifiants
pubmed: 35354946
doi: 10.1038/s41396-022-01228-5
pii: 10.1038/s41396-022-01228-5
pmc: PMC9213406
doi:
Substances chimiques
Bacterial Proteins
0
Type VI Secretion Systems
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1765-1775Subventions
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 31770082
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 32030001
Informations de copyright
© 2022. The Author(s), under exclusive licence to International Society for Microbial Ecology.
Références
Chassaing B, Cascales E. Antibacterial weapons: targeted destruction in the microbiota. Trends Microbiol. 2018;26:329–38.
pubmed: 29452951
doi: 10.1016/j.tim.2018.01.006
Aoki SK, Pamma R, Hernday AD, Bickham JE, Braaten BA, Low DA. Microbiology: contact-dependent inhibition of growth in Escherichia coli. Science. 2005;309:1245–8.
pubmed: 16109881
doi: 10.1126/science.1115109
Taylor NMI, van Raaij MJ, Leiman PG. Contractile injection systems of bacteriophages and related systems. Mol Microbiol. 2018;108:6–15.
pubmed: 29405518
doi: 10.1111/mmi.13921
Kohanski MA, Dwyer DJ, Collins JJ. How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol. 2010;8:423–35.
pubmed: 20440275
pmcid: 2896384
doi: 10.1038/nrmicro2333
Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D, Nelson WC, et al. Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci USA. 2006;103:1528–33.
pubmed: 16432199
pmcid: 1345711
doi: 10.1073/pnas.0510322103
Mougous JD, Cuff ME, Raunser S, Shen A, Zhou M, Gifford CA, et al. A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science. 2006;312:1526–30.
pubmed: 16763151
pmcid: 2800167
doi: 10.1126/science.1128393
Bingle LE, Bailey CM, Pallen MJ. Type VI secretion: a beginner’s guide. Curr Opin Microbiol. 2008;11:3–8.
pubmed: 18289922
doi: 10.1016/j.mib.2008.01.006
Basler M, Pilhofer M, Henderson GP, Jensen GJ, Mekalanos JJ. Type VI secretion requires a dynamic contractile phage tail-like structure. Nature. 2012;483:182–6.
pubmed: 22367545
pmcid: 3527127
doi: 10.1038/nature10846
Durand E, Nguyen VS, Zoued A, Logger L, Péhau-Arnaudet G, Aschtgen MS, et al. Biogenesis and structure of a type VI secretion membrane core complex. Nature. 2015;523:555–60.
pubmed: 26200339
doi: 10.1038/nature14667
Zoued A, Durand E, Brunet YR, Spinelli S, Douzi B, Guzzo M, et al. Priming and polymerization of a bacterial contractile tail structure. Nature. 2016;531:59–63.
pubmed: 26909579
doi: 10.1038/nature17182
Kudryashev M, Wang RYR, Brackmann M, Scherer S, Maier T, Baker D, et al. Structure of the type VI secretion system contractile sheath. Cell. 2015;160:952–62.
pubmed: 25723169
pmcid: 4359589
doi: 10.1016/j.cell.2015.01.037
Shneider MM, Buth SA, Ho BT, Basler M, Mekalanos JJ, Leiman PG. PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature. 2013;500:350–3.
pubmed: 23925114
pmcid: 3792578
doi: 10.1038/nature12453
Pukatzki S, Ma AT, Revel AT, Sturtevant D, Mekalanos JJ. Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci USA. 2007;104:15508–13.
pubmed: 17873062
pmcid: 2000545
doi: 10.1073/pnas.0706532104
Leiman PG, Basler M, Ramagopal UA, Bonanno JB, Sauder JM, Pukatzki S, et al. Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc Natl Acad Sci USA. 2009;106:4154–9.
pubmed: 19251641
pmcid: 2657435
doi: 10.1073/pnas.0813360106
Vettiger A, Basler M. Type VI secretion system substrates are transferred and reused among sister cells. Cell. 2016;167:99–110.e12.
pubmed: 27616061
doi: 10.1016/j.cell.2016.08.023
Ho BT, Fu Y, Dong TG, Mekalanos JJ. Vibrio cholerae type 6 secretion system effector trafficking in target bacterial cells. Proc Natl Acad Sci USA. 2017;114:9427–32.
pubmed: 28808000
pmcid: 5584461
doi: 10.1073/pnas.1711219114
Liang X, Kamal F, Pei TT, Xu P, Mekalanos JJ, Dong TG. An onboard checking mechanism ensures effector delivery of the type VI secretion system in Vibrio cholerae. Proc Natl Acad Sci USA. 2019;116:23292–8.
pubmed: 31659021
pmcid: 6859309
doi: 10.1073/pnas.1914202116
Hersch SJ, Watanabe N, Stietz MS, Manera K, Kamal F, Burkinshaw B, et al. Envelope stress responses defend against type six secretion system attacks independently of immunity proteins. Nat Microbiol. 2020;5:706–14.
pubmed: 32094588
pmcid: 7190449
doi: 10.1038/s41564-020-0672-6
Kamal F, Liang X, Manera K, Pei TT, Kim H, Lam LG, et al. Differential cellular response to translocated toxic effectors and physical penetration by the type VI secretion system. Cell Rep. 2020;31:107766.
pubmed: 32553162
doi: 10.1016/j.celrep.2020.107766
Hersch SJ, Manera K, Dong TG. Defending against the type six secretion system: beyond immunity genes. Cell Rep. 2020;33:108259.
pubmed: 33053336
doi: 10.1016/j.celrep.2020.108259
Hood RD, Singh P, Hsu FS, Güvener T, Carl MA, Trinidad RRS, et al. A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe. 2010;7:25–37.
pubmed: 20114026
pmcid: 2831478
doi: 10.1016/j.chom.2009.12.007
Miyata ST, Unterweger D, Rudko SP, Pukatzki S. Dual expression profile of type VI secretion system immunity genes protects pandemic Vibrio cholerae. PLoS Pathog. 2013;9:e1003752.
pubmed: 24348240
pmcid: 3857813
doi: 10.1371/journal.ppat.1003752
Koskiniemi S, Lamoureux JG, Nikolakakis KC, De Roodenbeke CTK, Kaplan MD, Low DA, et al. Rhs proteins from diverse bacteria mediate intercellular competition. Proc Natl Acad Sci USA. 2013;110:7032–7.
pubmed: 23572593
pmcid: 3637788
doi: 10.1073/pnas.1300627110
Whitney JC, Quentin D, Sawai S, LeRoux M, Harding BN, Ledvina HE, et al. An interbacterial NAD(P)
pubmed: 26456113
pmcid: 4624332
doi: 10.1016/j.cell.2015.09.027
Ting SY, Bosch DE, Mangiameli SM, Radey MC, Huang S, Park YJ, et al. Bifunctional immunity proteins protect bacteria against FtsZ-targeting ADP-ribosylating toxins. Cell. 2018;175:1380–92.e14.
pubmed: 30343895
pmcid: 6239978
doi: 10.1016/j.cell.2018.09.037
Ahmad S, Wang B, Walker MD, Tran HKR, Stogios PJ, Savchenko A, et al. An interbacterial toxin inhibits target cell growth by synthesizing (p)ppApp. Nature. 2019;575:674–8.
pubmed: 31695193
pmcid: 6883173
doi: 10.1038/s41586-019-1735-9
Russell AB, Hood RD, Bui NK, Leroux M, Vollmer W, Mougous JD. Type VI secretion delivers bacteriolytic effectors to target cells. Nature. 2011;475:343–9.
pubmed: 21776080
pmcid: 3146020
doi: 10.1038/nature10244
Brooks TM, Unterweger D, Bachmann V, Kostiuk B, Pukatzki S. Lytic activity of the Vibrio cholerae type VI secretion toxin VgrG-3 is inhibited by the antitoxin TsaB. J Biol Chem. 2013;288:7618–25.
pubmed: 23341465
pmcid: 3597803
doi: 10.1074/jbc.M112.436725
Dong TG, Ho BT, Yoder-Himes DR, Mekalanos JJ. Identification of T6SS-dependent effector and immunity proteins by Tn-seq in Vibrio cholerae. Proc Natl Acad Sci. 2013;110:2623–8.
pubmed: 23362380
pmcid: 3574944
doi: 10.1073/pnas.1222783110
Sikdar R, Simmons AR, Doerrler WT. Multiple envelope stress response pathways are activated in an Escherichia coli strain with mutations in two members of the DedA membrane protein family. J Bacteriol. 2013;195:12–24.
pubmed: 23042993
pmcid: 3536178
doi: 10.1128/JB.00762-12
Toska J, Ho BT, Mekalanos JJ. Exopolysaccharide protects Vibrio cholerae from exogenous attacks by the type 6 secretion system. Proc Natl Acad Sci USA. 2018;115:7997–8002.
pubmed: 30021850
pmcid: 6077691
doi: 10.1073/pnas.1808469115
Dong TG, Dong S, Catalano C, Moore R, Liang X, Mekalanos JJ. Generation of reactive oxygen species by lethal attacks from competing microbes. Proc Natl Acad Sci USA. 2015;112:2181–6.
pubmed: 25646446
pmcid: 4343105
doi: 10.1073/pnas.1425007112
Storey D, McNally A, Åstrand M, Santos JPG, Rodriguez-Escudero I, Elmore B, et al. Klebsiella pneumoniae type VI secretion system-mediated microbial competition is PhoPQ controlled and reactive oxygen species dependent. PLoS Pathog. 2020;16:e1007969.
pubmed: 32191774
pmcid: 7108748
doi: 10.1371/journal.ppat.1007969
Wong MJQ, Liang X, Smart M, Tang L, Moore R, Ingalls B, et al. Microbial herd protection mediated by antagonistic interaction in polymicrobial communities. Appl Environ Microbiol. 2016;82:6881–8.
pubmed: 27637882
pmcid: 5103087
doi: 10.1128/AEM.02210-16
Borenstein DB, Ringel P, Basler M, Wingreen NS. Established microbial colonies can survive type VI secretion assault. PLoS Comput Biol. 2015;11:e1004520.
pubmed: 26485125
pmcid: 4619000
doi: 10.1371/journal.pcbi.1004520
McNally L, Bernardy E, Thomas J, Kalziqi A, Pentz J, Brown SP, et al. Killing by type VI secretion drives genetic phase separation and correlates with increased cooperation. Nat Commun. 2017;8:14371.
pubmed: 28165005
pmcid: 5303878
doi: 10.1038/ncomms14371
Cardarelli L, Saak C, Gibbs KA. Two proteins form a heteromeric bacterial self-recognition complex in which variable subdomains determine allele-restricted binding. mBio. 2015;6:e00251.
pubmed: 26060269
pmcid: 4471559
doi: 10.1128/mBio.00251-15
Smith WPJ, Vettiger A, Winter J, Ryser T, Comstock LE, Basler M, et al. The evolution of the type VI secretion system as a disintegration weapon. PLoS Biol. 2020; 18:e3000720.
pubmed: 32453732
pmcid: 7274471
doi: 10.1371/journal.pbio.3000720
Russell AB, Peterson SB, Mougous JD. Type VI secretion system effectors: poisons with a purpose. Nat Rev Microbiol. 2014;12:137–48.
pubmed: 24384601
pmcid: 4256078
doi: 10.1038/nrmicro3185
Ho BT, Dong TG, Mekalanos JJ. A view to a kill: the bacterial type VI secretion system. Cell Host Microbe. 2014;15:9–21.
pubmed: 24332978
doi: 10.1016/j.chom.2013.11.008
Jurėnas D, Journet L. Activity, delivery, and diversity of type VI secretion effectors. Mol Microbiol. 2021;115:383–94.
pubmed: 33217073
doi: 10.1111/mmi.14648
LaCourse KD, Peterson SB, Kulasekara HD, Radey MC, Kim J, Mougous JD. Conditional toxicity and synergy drive diversity among antibacterial effectors. Nat Microbiol. 2018;3:440–6.
pubmed: 29459733
pmcid: 5876133
doi: 10.1038/s41564-018-0113-y
Altindis E, Dong T, Catalano C, Mekalanos J. Secretome analysis of Vibrio cholerae type VI secretion system reveals a new effector-immunity pair. mBio. 2015;6:e00075–15.
pubmed: 25759499
pmcid: 4453574
doi: 10.1128/mBio.00075-15
Clemens JD, Nair GB, Ahmed T, Qadri F, Holmgren J. Cholera. Lancet. 2017;390:1539–49.
pubmed: 28302312
doi: 10.1016/S0140-6736(17)30559-7
Nelson EJ, Harris JB, Morris JG, Calderwood SB, Camilli A. Cholera transmission: the host, pathogen and bacteriophage dynamic. Nat Rev Microbiol. 2009;7:693–702.
pubmed: 19756008
doi: 10.1038/nrmicro2204
MacIntyre DL, Miyata ST, Kitaoka M, Pukatzki S. The Vibrio cholerae type VI secretion system displays antimicrobial properties. Proc Natl Acad Sci USA. 2010;107:19520–4.
pubmed: 20974937
pmcid: 2984155
doi: 10.1073/pnas.1012931107
Borgeaud S, Metzger LC, Scrignari T, Blokesch M. The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer. Science. 2015;347:63–7.
pubmed: 25554784
doi: 10.1126/science.1260064
Fu Y, Waldor MK, Mekalanos JJ. Tn-seq analysis of Vibrio cholerae intestinal colonization reveals a role for T6SS-mediated antibacterial activity in the host. Cell Host Microbe. 2013;14:652–63.
pubmed: 24331463
pmcid: 3951154
doi: 10.1016/j.chom.2013.11.001
Kostiuk B, Santoriello FJ, Dhody AN, Provenzano D, Diaz-satizabal L, Bisaro F, et al. Type VI secretion system mutations reduced competitive fitness of classical Vibrio cholerae biotype. Nat Commun. 2021;12:6457.
pubmed: 34753930
pmcid: 8578542
doi: 10.1038/s41467-021-26847-y
García Véscovi E, Soncini FC, Groisman EA. Mg
pubmed: 8548821
doi: 10.1016/S0092-8674(00)81003-X
Miyata ST, Kitaoka M, Brooks TM, McAuley SB, Pukatzki S. Vibrio cholerae requires the type VI secretion system virulence factor VasX to kill Dictyostelium discoideum. Infect Immun. 2011;79:2941–9.
pubmed: 21555399
pmcid: 3191968
doi: 10.1128/IAI.01266-10
Kato A, Tanabe H, Utsumi R. Molecular characterization of the PhoP-PhoQ two-component system in Escherichia coli K-12: Identification of extracellular Mg
pubmed: 10464230
pmcid: 94065
doi: 10.1128/JB.181.17.5516-5520.1999
Minagawa S, Ogasawara H, Kato A, Yamamoto K, Eguchi Y, Oshima T, et al. Identification and molecular characterization of the Mg
pubmed: 12813061
pmcid: 161583
doi: 10.1128/JB.185.13.3696-3702.2003
Gunn JS, Hohmann EL. Transcriptional regulation of Salmonella virulence: a PhoQ periplasmic domain mutation results in increased net phosphotransfer to PhoP. J Bacteriol. 1996;178:6369–73.
pubmed: 8892844
pmcid: 178515
doi: 10.1128/jb.178.21.6369-6373.1996
Minagawa S, Okura R, Tsuchitani H, Hirao K, Yamamoto K, Utsumi R. Isolation and molecular characterization of the locked-on mutant of Mg
pubmed: 16041131
doi: 10.1271/bbb.69.1281
Soncini FC, Véscovi EG, Solomon F, Groisman EA. Molecular basis of the magnesium deprivation response in Salmonella typhimurium: identification of PhoP-regulated genes. J Bacteriol. 1996;178:5092–9.
pubmed: 8752324
pmcid: 178303
doi: 10.1128/jb.178.17.5092-5099.1996
Véscovi EG, Ayala YM, Cera ED, Groisman EA. Characterization of the bacterial sensor protein PhoQ: evidence for distinct binding sites for Mg
pubmed: 8999810
doi: 10.1074/jbc.272.3.1440
Pontes MH, Sevostyanova A, Groisman EA. When too much ATP is bad for protein synthesis. J Mol Biol. 2015;427:2586–94.
pubmed: 26150063
pmcid: 4531837
doi: 10.1016/j.jmb.2015.06.021
Groisman EA, Hollands K, Kriner MA, Lee EJ, Park SY, Pontes MH. Bacterial Mg
pubmed: 24079267
pmcid: 4059682
doi: 10.1146/annurev-genet-051313-051025
Smith RJ. Calcium and bacteria. Adv Micro Physiol. 1995;37:83–133.
doi: 10.1016/S0065-2911(08)60144-7
Dominguez DC. Calcium signalling in bacteria. Mol Microbiol. 2004;54:291–7.
pubmed: 15469503
doi: 10.1111/j.1365-2958.2004.04276.x
Gangola P, Rosen BP. Maintenance of intracellular calcium in Escherichia coli. J Biol Chem. 1987;262:12570–4.
pubmed: 2442165
doi: 10.1016/S0021-9258(18)45243-X
Dalebroux ZD, Matamouros S, Whittington D, Bishop RE, Miller SI. PhoPQ regulates acidic glycerophospholipid content of the Salmonella Typhimurium outer membrane. Proc Natl Acad Sci USA. 2014;111:1963–8.
pubmed: 24449881
pmcid: 3918827
doi: 10.1073/pnas.1316901111
Needham BD, Trent MS. Fortifying the barrier: the impact of lipid A remodelling on bacterial pathogenesis. Nat Rev Microbiol. 2013;11:467–81.
pubmed: 23748343
pmcid: 6913092
doi: 10.1038/nrmicro3047
Murata T, Tseng W, Guina T, Miller SI, Nikaido H. PhoPQ-mediated regulation produces a more robust permeability barrier in the outer membrane of Salmonella enterica serovar typhimurium. J Bacteriol. 2007;189:7213–22.
pubmed: 17693506
pmcid: 2168427
doi: 10.1128/JB.00973-07
Alteri CJ, Lindner JR, Reiss DJ, Smith SN, Mobley HLT. The broadly conserved regulator PhoP links pathogen virulence and membrane potential in Escherichia coli. Mol Microbiol. 2011;82:145–63.
pubmed: 21854465
pmcid: 3188958
doi: 10.1111/j.1365-2958.2011.07804.x
Dalebroux ZD, Miller SI. Salmonellae PhoPQ regulation of the outer membrane to resist innate immunity. Curr Opin Microbiol. 2014;17:106–13.
pubmed: 24531506
pmcid: 4043142
doi: 10.1016/j.mib.2013.12.005
Rojas ER, Billings G, Odermatt PD, Auer GK, Zhu L, Miguel A, et al. The outer membrane is an essential load-bearing element in Gram-negative bacteria. Nature. 2018;559:617–21.
pubmed: 30022160
pmcid: 6089221
doi: 10.1038/s41586-018-0344-3
Yu M, Wang YC, Huang CJ, Ma LS, Lai EM. Agrobacterium tumefaciens deploys a versatile antibacterial strategy to increase its competitiveness. J Bacteriol. 2022;203:e00490–20.
Crisan CV, Nichols HL, Wiesenfeld S, Steinbach G, Yunker PJ, Hammer BK. Glucose confers protection to Escherichia coli against contact killing by Vibrio cholerae. Sci Rep. 2021;11:2935.
pubmed: 33536444
pmcid: 7858629
doi: 10.1038/s41598-021-81813-4
Bachmann V, Kostiuk B, Unterweger D, Diaz-Satizabal L, Ogg S, Pukatzki S. Bile salts modulate the mucin-activated type VI secretion system of pandemic Vibrio cholerae. PLoS Negl Trop Dis. 2015;9:e0004031.
pubmed: 26317760
pmcid: 4552747
doi: 10.1371/journal.pntd.0004031