Non-coding RNAs in Kawasaki disease: Molecular mechanisms and clinical implications.


Journal

BioEssays : news and reviews in molecular, cellular and developmental biology
ISSN: 1521-1878
Titre abrégé: Bioessays
Pays: United States
ID NLM: 8510851

Informations de publication

Date de publication:
06 2022
Historique:
revised: 10 03 2022
received: 29 10 2021
accepted: 11 03 2022
pubmed: 1 4 2022
medline: 25 5 2022
entrez: 31 3 2022
Statut: ppublish

Résumé

Kawasaki disease (KD) is an acute self-limiting vasculitis with coronary complications, usually occurring in children. The incidence of KD in children is increasing year by year, mainly in East Asian countries, but relatively stably in Europe and America. Although studies on KD have been reported, the pathogenesis of KD is unknown. With the development of high-throughput sequencing technology, growing number of regulatory noncoding RNAs (ncRNAs) including microRNA (miRNA), long noncoding RNA (lncRNA), and circular RNA (circRNA) have been identified to involved in KD. However, the role of ncRNAs in KD has not been comprehensively elucidated. Therefore, it is significative to study the regulatory role of ncRNA in KD, which might help to uncover new and effective therapeutic strategies for KD. In this review, we summarize recent studies on ncRNA in KD from the perspectives of immune disorders, inflammatory disorders, and endothelial dysfunction, and highlight the potential of ncRNAs as therapeutic targets for KD.

Identifiants

pubmed: 35355301
doi: 10.1002/bies.202100256
doi:

Substances chimiques

MicroRNAs 0
RNA, Circular 0
RNA, Long Noncoding 0
RNA, Untranslated 0

Types de publication

Journal Article Review Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2100256

Informations de copyright

© 2022 Wiley Periodicals LLC.

Références

Newburger, J. W., Takahashi, M., & Burns, J. C. (2016). Kawasaki Disease. Journal of the American College of Cardiology, 67(14), 1738-1749.
Singh, S., Vignesh, P., & Burgner, D. (2015). The epidemiology of Kawasaki disease: A global update. Archives of Disease in Childhood, 100(11), 1084-1088.
Gordon, J. B., Daniels, L. B., Kahn, A. M., Jimenez-Fernandez, S., Vejar, M., Numano, F., & Burns, J. C. (2016). The spectrum of cardiovascular lesions requiring intervention in adults after Kawasaki disease. JACC: Cardiovascular Interventions, 9(7), 687-696.
Uehara, R., & Belay, E. D. (2012). Epidemiology of Kawasaki disease in Asia, Europe, and the United States. Journal of Epidemiology, 22(2), 79-85.
Miura, M., Kobayashi, T., Kaneko, T., Ayusawa, M., Fukazawa, R., Fukushima, N., Fuse, S., Hamaoka, K., Hirono, K., Kato, T., Mitani, Y., Sato, S., Shimoyama, S., Shiono, J., Suda, K., Suzuki, H., Maeda, J., Waki, K., Kato, H., … Yamamura, K. (2018). Association of severity of coronary artery aneurysms in patients with Kawasaki disease and risk of later coronary events. JAMA Pediatrics, 172(5), e180030.
Inokuchi, R., Kurata, H., Harada, M., Aoki, Y., Matsubara, T., Doi, K., Ishii, T., Gunshin, M., Hiruma, T., Nakajima, S., & Yahagi, N. (2013). Coronary artery aneurysms after adult-onset Kawasaki disease. Circulation, 127(15), 1636-1637.
Ae, R., Makino, N., Kosami, K., Kuwabara, M., Matsubara, Y., & Nakamura, Y. (2020). Epidemiology, treatments, and cardiac complications in patients with Kawasaki disease: The nationwide survey in Japan, 2017-2018. Journal of Pediatrics, 225: 23-29.e2 e2.
Mccrindle, B. W., Rowley, A. H., Newburger, J. W., Burns, J. C., Bolger, A. F., Gewitz, M., Baker, A. L., Jackson, M. A., Takahashi, M., Shah, P. B., Kobayashi, T., Wu, M.-H., Saji, T. T., & Pahl, E. (2017). Diagnosis, treatment, and long-term management of Kawasaki disease: A scientific statement for health professionals from the american heart association. Circulation, 135(17), e927-e99.
Ae, R., Abrams, J. Y., Maddox, R. A., Schonberger, L. B., Nakamura, Y., Kuwabara, M., Makino, N., Matsubara, Y., Matsubara, D., Kosami, K., Sasahara, T., & Belay, E. D. (2020). Outcomes in Kawasaki disease patients with coronary artery abnormalities at admission. American Heart Journal, 225: 120-128.
Friedman, K. G., Gauvreau, K., Hamaoka-Okamoto, A., Tang, A., Berry, E., Tremoulet, A. H., Mahavadi, V. S., Baker, A., Deferranti, S. D., Fulton, D. R., Burns, J. C., & Newburger, J. W. (2016). Coronary artery aneurysms in Kawasaki disease: Risk factors for progressive disease and adverse cardiac events in the US population. Journal of the American Heart Association, 5(9).
Cabili, M. N., Trapnell, C., Goff, L., Koziol, M., Tazon-Vega, B., Regev, A., & Rinn, J. L. (2011). Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes & Development, 25(18), 1915-1927.
Deveson, I. W., Hardwick, S. A., Mercer, T. R., & Mattick, J. S. (2017). The dimensions, dynamics, and relevance of the mammalian noncoding transcriptome. Trends in Genetics, 33(7), 464-478.
Beermann, J., Piccoli, M.-T., Viereck, J., & Thum, T. (2016). Non-coding RNAs in development and disease: Background, mechanisms, and therapeutic approaches. Physiological Reviews, 96(4), 1297-1325.
Ballarino, M., Morlando, M., Fatica, A., & Bozzoni, I. (2016). Non-coding RNAs in muscle differentiation and musculoskeletal disease. Journal of Clinical Investigation, 126(6), 2021-2030.
Liu, Y., Ao, X., Yu, W., Zhang, Y., & Wang, J. (2022). Biogenesis, functions, and clinical implications of circular RNAs in non-small cell lung cancer. Molecular Therapy Nucleic Acids, 27: 50-72.
Liu, Y. (2019). Targeting the non-canonical AKT-FOXO3a axis: A potential therapeutic strategy for oral squamous cell carcinoma. EBioMedicine, 49: 6-8.
Liu, Y., Ao, X., Ji, G., Zhang, Y., Yu, W., & Wang, J. (2021). Mechanisms of action and clinical implications of microRNAs in the drug resistance of gastric cancer. Frontiers in Oncology, 11: 768918.
Panni, S., Lovering, R. C., Porras, P., & Orchard, S. (2020). Non-coding RNA regulatory networks. Biochimica et Biophysica Acta - Gene Regulatory Mechanisms, 1863(6), 194417.
Xie, Z., Huang, Y., Li, X., Lun, Y.u, Li, X., He, Y., Wu, S., Wang, S., Sun, J., & Zhang, J. (2022). Atlas of circulating immune cells in Kawasaki disease. International Immunopharmacology, 102: 108396.
Chang, L., Yang, H.-W., Lin, T.-Y.u, & Yang, K. D. (2021). Perspective of immunopathogenesis and immunotherapies for Kawasaki disease. Frontiers in Pediatrics, 9: 697632.
Hoang, L. T., Shimizu, C., Ling, L., Naim, A. N. M., Khor, C. C., Tremoulet, A. H., Wright, V., Levin, M., Hibberd, M. L., & Burns, J. C. (2014). Global gene expression profiling identifies new therapeutic targets in acute Kawasaki disease. Genome Med, 6(11), 541.
Ye, Q., Gong, F.-Q.i, Shang, S.-Q., & Hu, J. (2016). Intravenous immunoglobulin treatment responsiveness depends on the degree of CD8+ T cell activation in Kawasaki disease. Clin. Immunol., 171: 25-31.
Noval Rivas, M., Lee, Y., Wakita, D., Chiba, N., Dagvadorj, J., Shimada, K., Chen, S., Fishbein, M. C., Lehman, T. J. A., Crother, T. R., & Arditi, M. (2017). CD8+ T cells contribute to the development of coronary arteritis in the Lactobacillus casei cell wall extract-induced murine model of Kawasaki disease. Arthritis & Rheumatology, 69(2), 410-421.
Wang, Z., Xie, L., Ding, G., Song, S., Chen, L., Li, G., Xia, M., Han, D., Zheng, Y., Liu, J., Xiao, T., Zhang, H., Huang, Y., Li, Y., & Huang, M. (2021). Single-cell RNA sequencing of peripheral blood mononuclear cells from acute Kawasaki disease patients. Nature Communications, 12(1), 5444.
Takahashi, K., Oharaseki, T., & Yokouchi, Y. (2011). Pathogenesis of Kawasaki disease. Clinical and Experimental Immunology, 164(Suppl 1), 20-22.
Wakita, D., Kurashima, Y., Crother, T. R., Noval Rivas, M., Lee, Y., Chen, S., Fury, W., Bai, Y.u, Wagner, S., Li, D., Lehman, T., Fishbein, M. C., Hoffman, H. M., Shah, P. K., Shimada, K., & Arditi, M. (2016). Role of interleukin-1 signaling in a mouse model of Kawasaki disease-associated abdominal aortic aneurysm. Arteriosclerosis, Thrombosis, and Vascular Biology, 36(5), 886-897.
Lee, Y., Wakita, D., Dagvadorj, J., Shimada, K., Chen, S., Huang, G., Lehman, T. J. A., Fishbein, M. C., Hoffman, H. M., Crother, T. R., & Arditi, M. (2015). IL-1 signaling is critically required in stromal cells in Kawasaki disease vasculitis mouse model: Role of both IL-1alpha and IL-1beta. Arteriosclerosis, Thrombosis, and Vascular Biology, 35(12), 2605-2616.
Lee, Y., Schulte, D. J., Shimada, K., Chen, S., Crother, T. R., Chiba, N., Fishbein, M. C., Lehman, T. J. A., & Arditi, M. (2012). Interleukin-1beta is crucial for the induction of coronary artery inflammation in a mouse model of Kawasaki disease. Circulation, 125(12), 1542-1550.
Koné-Paut, I., Tellier, S., Belot, A., Brochard, K., Guitton, C., Marie, I., Meinzer, U., Cherqaoui, B., Galeotti, C., Boukhedouni, N., Agostini, H., Arditi, M., Lambert, V., & Piedvache, C. (2021). Phase II open label study of anakinra in intravenous immunoglobulin-resistant Kawasaki disease. Arthritis & Rheumatology, 73(1), 151-161.
Yang, J., Jain, S., Capparelli, E. V., Best, B. M., Son, M. B., Baker, A., Newburger, J. W., Franco, A., Printz, B. F., He, F., Shimizu, C., Hoshino, S., Bainto, E., Moreno, E., Pancheri, J., Burns, J. C., & Tremoulet, A. H. (2021). Anakinra treatment in patients with acute Kawasaki disease with coronary artery aneurysms: A Phase I/IIa trial. Journal of Pediatrics
Alphonse, M. P., Duong, T. T., Shumitzu, C., Hoang, T. L., Mccrindle, B. W., Franco, A., Schurmans, S., Philpott, D. J., Hibberd, M. L., Burns, J., Kuijpers, T. W., & Yeung, R. S. M. (2016). Inositol-triphosphate 3-Kinase C mediates inflammasome activation and treatment response in Kawasaki disease. Journal of Immunology, 197(9), 3481-3489.
Tian, J., An, X., & Niu, L. (2017). Correlation between NF-kappaB signal pathway-mediated caspase-4 activation and Kawasaki disease. Experimental and Therapeutic Medicine, 13(6), 3333-3336.
Ko, T.-M., Kuo, H.o-C., Chang, J.-S., Chen, S.-P., Liu, Y.i-M., Chen, H.-W., Tsai, F.-J., Lee, Y.i-C., Chen, C.-H., Wu, J.-Y., & Chen, Y.-T. (2015). CXCL10/IP-10 is a biomarker and mediator for Kawasaki disease. Circulation Research, 116(5), 876-883.
Guo, M. M.-H., Tseng, W.-N., Ko, C.-H., Pan, H.-M., Hsieh, K.-S., & Kuo, H.-C. (2015). Th17- and Treg-related cytokine and mRNA expression are associated with acute and resolving Kawasaki disease. Allergy, 70(3), 310-318.
Wang, Y., Hu, J., Liu, J., Geng, Z., Tao, Y., Zheng, F., Wang, Y., Fu, S., Wang, W., Xie, C., Zhang, Y., & Gong, F. (2020). The role of Ca(2+)/NFAT in dysfunction and inflammation of human coronary endothelial cells induced by sera from patients with Kawasaki disease. Scientific Reports, 10(1), 4706.
Xu, M., Qi, Q.i, Men, L., Wang, S., Li, M., Xiao, M., Chen, X., Wang, S., Wang, G., Jia, H., & Liu, C. (2020). Berberine protects Kawasaki disease-induced human coronary artery endothelial cells dysfunction by inhibiting of oxidative and endoplasmic reticulum stress. Vascul Pharmacol, 127: 106660.
Ueno, K., Ninomiya, Y., Hazeki, D., Masuda, K., Nomura, Y., & Kawano, Y. (2017). Disruption of endothelial cell homeostasis plays a key role in the early pathogenesis of coronary artery abnormalities in Kawasaki disease. Scientific Reports, 7: 43719.
Jia, C., Zhang, J., Chen, H., Zhuge, Y., Chen, H., Qian, F., Zhou, K., Niu, C., Wang, F., Qiu, H., Wang, Z., Xiao, J., Rong, X., & Chu, M. (2019). Endothelial cell pyroptosis plays an important role in Kawasaki disease via HMGB1/RAGE/cathespin B signaling pathway and NLRP3 inflammasome activation. Cell Death Dis., 10(10), 778.
He, M., Chen, Z., Martin, M., Zhang, J., Sangwung, P., Woo, B., Tremoulet, A. H., Shimizu, C., Jain, M. K., Burns, J. C., & Shyy, J. Y.-J. (2017). miR-483 targeting of CTGF suppresses endothelial-to-mesenchymal transition: Therapeutic implications in Kawasaki disease. Circulation Research, 120(2), 354-365.
Chen, L., Heikkinen, L., Wang, C., Yang, Y., Sun, H., & Wong, G. (2019). Trends in the development of miRNA bioinformatics tools. Briefings in Bioinformatics, 20(5), 1836-1852.
Dragomir, M. P., Knutsen, E., & Calin, G. A. (2018). SnapShot: Unconventional miRNA functions. Cell, 174(4), 1038-1038.e1.
Zhang, Y., Tang, C., Yu, T., Zhang, R., Zheng, H., & Yan, W. (2017). MicroRNAs control mRNA fate by compartmentalization based on 3' UTR length in male germ cells. Genome Biology, 18(1), 105.
Moore, M. J., Scheel, T. K. H., Luna, J. M., Park, C. Y., Fak, J. J., Nishiuchi, E., Rice, C. M., & Darnell, R. B. (2015). miRNA-target chimeras reveal miRNA 3'-end pairing as a major determinant of Argonaute target specificity. Nature Communications, 6: 8864.
Liu, Y., Ao, X., Zhou, X., Du, C., & Kuang, S. (2022). The regulation of PBXs and their emerging role in cancer. Journal of Cellular and Molecular Medicine, 1363-1379
Martin, H. C., Wani, S., Steptoe, A. L., Krishnan, K., Nones, K., Nourbakhsh, E., Vlassov, A., Grimmond, S. M., & Cloonan, N. (2014). Imperfect centered miRNA binding sites are common and can mediate repression of target mRNAs. Genome Biology 15(3), R51.
Simpson, L. J., & Ansel, K. M. (2015). MicroRNA regulation of lymphocyte tolerance and autoimmunity. Journal of Clinical Investigation 125(6), 2242-2249.
Barwari, T., Joshi, A., & Mayr, M. (2016). MicroRNAs in cardiovascular disease. Journal of the American College of Cardiology, 68(23), 2577-2584.
Zhang, L., Ye, Y., Tu, H., Hildebrandt, M. A., Zhao, L., Heymach, J. V., Roth, J. A., & Wu, X. (2017). MicroRNA-related genetic variants in iron regulatory genes, dietary iron intake, microRNAs and lung cancer risk. Annals of Oncology, 28(5), 1124-1129.
Miao, S., Zhang, Q., Chang, W., & Wang, J. (2021). New insights into platelet-enriched miRNAs: Production, functions, roles in tumors, and potential targets for tumor diagnosis and treatment. Molecular Cancer Therapeutics, 20(8), 1359-1366.
Ni, F.-F., Li, C.-R., Li, Q., Xia, Y., Wang, G.-B., & Yang, J. (2014). Regulatory T cell microRNA expression changes in children with acute Kawasaki disease. Clinical and Experimental Immunology, 178(2), 384-393.
Shimizu, C., Kim, J., Stepanowsky, P., Trinh, C., Lau, H. D., Akers, J. C., Chen, C., Kanegaye, J. T., Tremoulet, A., Ohno-Machado, L., & Burns, J. C. (2013). Differential expression of miR-145 in children with Kawasaki disease. PLoS One, 8(3), e58159.
Yun, K.i W., Lee, J.i Y., Yun, S. W., Lim, I.n S., & Choi, E. S. (2014). Elevated serum level of microRNA (miRNA)-200c and miRNA-371-5p in children with Kawasaki disease. Pediatric Cardiology, 35(5), 745-752.
Nakaoka, H., Hirono, K., Yamamoto, S., Takasaki, I., Takahashi, K., Kinoshita, K., Takasaki, A., Nishida, N., Okabe, M., Ce, W., Miyao, N., Saito, K., Ibuki, K., Ozawa, S., Adachi, Y., & Ichida, F. (2018). MicroRNA-145-5p and microRNA-320a encapsulated in endothelial microparticles contribute to the progression of vasculitis in acute Kawasaki Disease. Scientific Reports, 8(1), 1016.
Jone, P.-N.i, Korst, A., Karimpour-Fard, A., Thomas, T., Dominguez, S. R., Heizer, H., Anderson, M. S., Glode, M. P., Sucharov, C. C., & Miyamoto, S. D. (2020). Circulating microRNAs differentiate Kawasaki Disease from infectious febrile illnesses in childhood. Journal of Molecular and Cellular Cardiology, 146: 12-18.
Huang, L., Ma, Q., Li, Y., Li, B.o, & Zhang, L. (2018). Inhibition of microRNA-210 suppresses pro-inflammatory response and reduces acute brain injury of ischemic stroke in mice. Experimental Neurology, 300: 41-50.
Luo, Y., Yang, J., Zhang, C., Jin, Y., Pan, H., Liu, L., Gong, Y., Xia, Y.u, Wang, G., Zhang, J., Li, C., & Li, Q. (2020). Up-regulation of miR-27a promotes monocyte-mediated inflammatory responses in Kawasaki disease by inhibiting function of B10 cells. Journal of Leukocyte Biology 107(1), 133-144.
Chu, M., Wu, R., Qin, S., Hua, W., Shan, Z., Rong, X., Zeng, J., Hong, L., Sun, Y., Liu, Y., Li, W., Wang, S., & Zhang, C. (2017). Bone marrow-derived microRNA-223 works as an endocrine genetic signal in vascular endothelial cells and participates in vascular injury from Kawasaki disease. Journal of the American Heart Association, 6(2).
Maruyama, D., Kocatürk, B., Lee, Y., Abe, M., Lane, M., Moreira, D., Chen, S., Fishbein, M. C., Porritt, R. A., Noval Rivas, M., & Arditi, M. (2021). MicroRNA-223 regulates the development of cardiovascular lesions in LCWE-induced murine kawasaki disease vasculitis by repressing the NLRP3 inflammasome. Frontiers in Pediatrics, 9: 662953.
Neudecker, V., Haneklaus, M., Jensen, O., Khailova, L., Masterson, J. C., Tye, H., Biette, K., Jedlicka, P., Brodsky, K. S., Gerich, M. E., Mack, M., Robertson, A. A. B., Cooper, M. A., Furuta, G. T., Dinarello, C. A., O'neill, L. A., Eltzschig, H. K., Masters, S. L., & Mcnamee, E. N. (2017). Myeloid-derived miR-223 regulates intestinal inflammation via repression of the NLRP3 inflammasome. Journal of Experimental Medicine, 214(6), 1737-1752.
Bauernfeind, F., Rieger, A., Schildberg, F. A., Knolle, P. A., Schmid-Burgk, J. L., & Hornung, V. (2012). NLRP3 inflammasome activity is negatively controlled by miR-223. Journal of Immunology, 189(8), 4175-4181.
Rong, X., Ge, D., Shen, D., Chen, X., Wang, X., Zhang, L.u, Jia, C., Zeng, J., He, Y. ’. E., Qiu, H., Su, X., & Chu, M. (2018). miR-27b suppresses endothelial cell proliferation and migration by targeting Smad7 in Kawasaki disease. Cellular Physiology and Biochemistry, 48(4), 1804-1814.
Miao, S., Shu, D., Zhu, Y., Lu, M., Zhang, Q., Pei, Y., He, A.o-D.i, Ma, R., Zhang, B., & Ming, Z.-Y. (2019). Cancer cell-derived immunoglobulin G activates platelets by binding to platelet FcgammaRIIa. Cell Death and Disease, 10(2), 87.
Khodadi, E. (2020). Platelet function in cardiovascular disease: Activation of molecules and activation by molecules. Cardiovascular Toxicology, 20(1), 1-10.
Zeng, Z., Xia, L., Fan, X., Ostriker, A. C., Yarovinsky, T., Su, M., Zhang, Y., Peng, X., Xie, Y.i, Pi, L., Gu, X., Chung, S. K., Martin, K. A., Liu, R., Hwa, J., & Tang, W. H.o. (2019). Platelet-derived miR-223 promotes a phenotypic switch in arterial injury repair. Journal of Clinical Investigation, 129(3), 1372-1386.
Parra-Izquierdo, I., Mccarty, O. J. T., & Aslan, J. E. (2020). Platelet miR-223 delivery rescues vascular cells in Kawasaki disease. Circulation Research, 127(7), 874-876.
Zhang, Y., Wang, Y., Zhang, L.i, Xia, L., Zheng, M., Zeng, Z., Liu, Y., Yarovinsky, T., Ostriker, A. C., Fan, X., Weng, K., Su, M., Huang, P., Martin, K. A., Hwa, J., & Tang, W. H.o. (2020). Reduced Platelet miR-223 induction in Kawasaki disease leads to severe coronary artery pathology through a miR-223/PDGFRbeta vascular smooth muscle cell axis. Circulation Research 127(7), 855-873.
Al-Harbi, S., Choudhary, G. S., Ebron, J. S., Hill, B. T., Vivekanathan, N., Ting, A. H., Radivoyevitch, T., Smith, M. R., Shukla, G. C., & Almasan, A. (2015). miR-377-dependent BCL-xL regulation drives chemotherapeutic resistance in B-cell lymphoid malignancies. Molecular Cancer, 14: 185.
Li, Q.i, Yang, J., Zhang, J., Liu, X.-W., Yang, C.-J., Fan, Z.-X., Wang, H.-B.o, Yang, Y., Zheng, T., & Yang, J. (2020). Inhibition of microRNA-327 ameliorates ischemia/reperfusion injury-induced cardiomyocytes apoptosis through targeting apoptosis repressor with caspase recruitment domain. Journal of Cellular Physiology, 235(4), 3753-3767.
Kim, J.i-H., Lee, D.-K., Kim, J., Choi, S., Park, W., Ha, K.-S., Kim, T.-H., Choe, J., Won, M.-H.o, Kwon, Y.-G., & Kim, Y.-M. (2017). A miRNA-101-3p/Bim axis as a determinant of serum deprivation-induced endothelial cell apoptosis. Cell Death and Disease, 8(5), e2808.
Yao, R.-W., Wang, Y., & Chen, L.-L. (2019). Cellular functions of long noncoding RNAs. Nature Cell Biology, 21(5), 542-551.
Zhang, A., Zhou, N., Huang, J., Liu, Q., Fukuda, K., Ma, D., Lu, Z., Bai, C., Watabe, K., & Mo, Y.-Y. (2013). The human long non-coding RNA-RoR is a p53 repressor in response to DNA damage. Cell Research, 23(3), 340-350.
Yoon, J.e-H., Abdelmohsen, K., Kim, J., Yang, X., Martindale, J. L., Tominaga-Yamanaka, K., White, E. J., Orjalo, A. V., Rinn, J. L., Kreft, S. G., Wilson, G. M., & Gorospe, M. (2013). Scaffold function of long non-coding RNA HOTAIR in protein ubiquitination. Nature Communications, 4: 2939.
He, L., Chen, Y., Hao, S., & Qian, J. (2018). Uncovering novel landscape of cardiovascular diseases and therapeutic targets for cardioprotection via long noncoding RNA-miRNA-mRNA axes. Epigenomics, 10(5), 661-671.
Xu, C., Zhang, Y., Wang, Q., Xu, Z., Jiang, J., Gao, Y., Gao, M., Kang, J., Wu, M., Xiong, J., Ji, K., Yuan, W., Wang, Y., & Liu, H. (2016). Long non-coding RNA GAS5 controls human embryonic stem cell self-renewal by maintaining NODAL signalling. Nature Communications, 7: 13287.
Li, D., Liu, X., Zhou, J., Hu, J., Zhang, D., Liu, J., Qiao, Y., & Zhan, Q. (2017). Long noncoding RNA HULC modulates the phosphorylation of YB-1 through serving as a scaffold of extracellular signal-regulated kinase and YB-1 to enhance hepatocarcinogenesis. Hepatology, 65(5), 1612-1627.
Michalik, K. M., You, X., Manavski, Y., Doddaballapur, A., Zörnig, M., Braun, T., John, D., Ponomareva, Y., Chen, W., Uchida, S., Boon, R. A., & Dimmeler, S. (2014). Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth. Circulation Research, 114(9), 1389-1397.
Sharma, K., Vignesh, P., Srivastava, P., Sharma, J., Chaudhary, H., Mondal, S., Kaur, A., Kaur, H., & Singh, S. (2021). Epigenetics in Kawasaki Disease. Frontiers in Pediatrics, 9: 673294.
Li, Z., Chao, T.i-C., Chang, K.-Y., Lin, N., Patil, V. S., Shimizu, C., Head, S. R., Burns, J. C., & Rana, T. M. (2014). The long noncoding RNA THRIL regulates TNFalpha expression through its interaction with hnRNPL. Proceedings of the National Academy of Sciences of the United States of America, 111(3), 1002-1007.
Ko, T.-M., Chang, J.-S., Chen, S.-P., Liu, Y.i-M., Chang, C.-J., Tsai, F.-J., Lee, Y.i-C., Chen, C.-H., Chen, Y.-T., & Wu, J.-Y. (2019). Genome-wide transcriptome analysis to further understand neutrophil activation and lncRNA transcript profiles in Kawasaki disease. Scientific Reports, 9(1), 328.
Zhou, Q., Huang, X. R., Yu, J., Yu, X., & Lan, H. Y. (2015). Long noncoding RNA Arid2-IR is a novel therapeutic target for renal inflammation. Molecular Therapy, 23(6), 1034-1043.
Jiang, C., Fang, X., Jiang, Y., Shen, F., Hu, Z., Li, X., & Huang, X. (2016). TNF-alpha induces vascular endothelial cells apoptosis through overexpressing pregnancy induced noncoding RNA in Kawasaki disease model. International Journal of Biochemistry & Cell Biology, 72: 118-124.
Etulain, J. (2018). Platelets in wound healing and regenerative medicine. Platelets, 29(6), 556-568.
Yahata, T., Suzuki, C., Yoshioka, A., Hamaoka, A., & Ikeda, K. (2014). Platelet activation dynamics evaluated using platelet-derived microparticles in Kawasaki disease. Circulation Journal, 78(1), 188-193.
Atianand, M. K., Hu, W., Satpathy, A. T., Shen, Y., Ricci, E. P., Alvarez-Dominguez, J. R., Bhatta, A., Schattgen, S. A., Mcgowan, J. D., Blin, J., Braun, J. E., Gandhi, P., Moore, M. J., Chang, H. Y., Lodish, H. F., Caffrey, D. R., & Fitzgerald, K. A. (2016). A long noncoding RNA lincRNA-EPS acts as a transcriptional brake to restrain inflammation. Cell, 165(7), 1672-1685.
Wu, P., Mo, Y., Peng, M., Tang, T., Zhong, Y.u, Deng, X., Xiong, F., Guo, C., Wu, X.u, Li, Y., Li, X., Li, G., Zeng, Z., & Xiong, W. (2020). Emerging role of tumor-related functional peptides encoded by lncRNA and circRNA. Molecular Cancer, 19(1), 22.
Tao, M., Zheng, M., Xu, Y., Ma, S., Zhang, W., & Ju, S. (2021). CircRNAs and their regulatory roles in cancers. Molecular Medicine, 27(1), 94.
Hanan, M., Soreq, H., & Kadener, S. (2017). CircRNAs in the brain. RNA Biology 14(8), 1028-1034.
VN, K., Han, J., & Siomi, M. C. (2009). Biogenesis of small RNAs in animals. Nature Reviews Molecular Cell Biology, 10(2), 126-39.
Hansen, T. B., Jensen, T. I., Clausen, B. H., Bramsen, J. B., Finsen, B., Damgaard, C. K., & Kjems, J. (2013). Natural RNA circles function as efficient microRNA sponges. Nature, 495(7441), 384-388.
Holdt, L. M., Stahringer, A., Sass, K., Pichler, G., Kulak, N. A., Wilfert, W., Kohlmaier, A., Herbst, A., Northoff, B. H., Nicolaou, A., Gäbel, G., Beutner, F., Scholz, M., Thiery, J., Musunuru, K., Krohn, K., Mann, M., & Teupser, D. (2016). Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nature Communications, 7: 12429.
Pamudurti, N. R., Bartok, O., Jens, M., Ashwal-Fluss, R., Stottmeister, C., Ruhe, L., Hanan, M., Wyler, E., Perez-Hernandez, D., Ramberger, E., Shenzis, S., Samson, M., Dittmar, G., Landthaler, M., Chekulaeva, M., Rajewsky, N., & Kadener, S. (2017). Translation of CircRNAs. Molecular Cell, 66(1), 9-21.e7 e7.
Yu, C.-Y., Li, T.-C., Wu, Y.i-Y., Yeh, C.-H., Chiang, W., Chuang, C.-Y.u, & Kuo, H.-C. (2017). The circular RNA circBIRC6 participates in the molecular circuitry controlling human pluripotency. Nature Communications, 8(1), 1149.
Liu, C.-X., Li, X., Nan, F., Jiang, S., Gao, X., Guo, S.i-K., Xue, W., Cui, Y., Dong, K., Ding, H., Qu, B.o, Zhou, Z., Shen, N., Yang, L.i, & Chen, L.-L. (2019). Structure and degradation of circular RNAs regulate PKR activation in innate immunity. Cell, 177(4), 865-880.e21 e21.
Zhou, T., Xie, X., Li, M., Shi, J., Zhou, J. J., Knox, K. S., Wang, T., Chen, Q.i, & Gu, W. (2018). Rat BodyMap transcriptomes reveal unique circular RNA features across tissue types and developmental stages. RNA., 24(11), 1443-1456.
Yoon, K. L. (2019). Circular RNA as a possible novel biomarker for Kawasaki disease. Journal of Lipid and Atherosclerosis, 8(1), 48-9.
Chen, X.u, Yang, T., Wang, W., Xi, W., Zhang, T., Li, Q.i, Yang, A., & Wang, T. (2019). Circular RNAs in immune responses and immune diseases. Theranostics, 9(2), 588-607.
Zhang, C., Han, X., Yang, L., Fu, J., Sun, C., Huang, S., Xiao, W., Gao, Y., Liang, Q., Wang, X., Luo, F., Lu, W., & Zhou, Y. (2020). Circular RNA circPPM1F modulates M1 macrophage activation and pancreatic islet inflammation in type 1 diabetes mellitus. Theranostics, 10(24), 10908-10924.
Ye, Y.u-L., Yin, J., Hu, T., Zhang, L.i-P., Wu, L.-Y., & Pang, Z. (2019). Increased circulating circular RNA_103516 is a novel biomarker for inflammatory bowel disease in adult patients. World Journal of Gastroenterology, 25(41), 6273-6288.
Kong, P., Yu, Y., Wang, L.u, Dou, Y.-Q., Zhang, X.u-H., Cui, Y., Wang, H.-Y., Yong, Y.u-T., Liu, Y.a-B., Hu, H.-J., Cui, W., Sun, S.-G., Li, B.-H., Zhang, F., & Han, M. (2019). circ-Sirt1 controls NF-kappaB activation via sequence-specific interaction and enhancement of SIRT1 expression by binding to miR-132/212 in vascular smooth muscle cells. Nucleic Acids Research, 47(7), 3580-3593.
Zhang, Q., Long, J., Li, N., Ma, X., & Zheng, L. (2021). Circ_CLASP2 regulates high glucose-induced dysfunction of human endothelial cells through targeting miR-140-5p/FBXW7 axis. Frontiers in Pharmacology, 12: 594793.
Jia, H.-L., Liu, C.-W.u, Zhang, L.i, Xu, W.-J., Gao, X.-J., Bai, J., Xu, Y.u-F., Xu, M.-G., & Zhang, G. (2017). Sets of serum exosomal microRNAs as candidate diagnostic biomarkers for Kawasaki disease. Scientific Reports, 7: 44706.
Kuo, H.o-C., Hsieh, K.-S., Ming-Huey Guo, M., Weng, K.-P., Ger, L.-P., Chan, W.-C., & Li, S.-C. (2016). Next-generation sequencing identifies micro-RNA-based biomarker panel for Kawasaki disease. Journal of Allergy and Clinical Immunology, 138(4), 1227-1230.
Kim, Y.-K. (2019). Analysis of circular RNAs in the coronary arteries of patients with Kawasaki disease. Journal of Lipid and Atherosclerosis, 8(1), 50-7.
Wu, J., Zhou, Q., Niu, Y., Chen, J., Zhu, Y., Ye, S., Xi, Y., Wang, F., Qiu, H., & Bu, S. (2019). Aberrant expression of serum circANRIL and hsa_circ_0123996 in children with Kawasaki disease. Journal of Clinical Laboratory Analysis, 33(5), e22874.
Zhang, W., Wang, Y., Zeng, Y., Hu, L., & Zou, G. (2017). Serum miR-200c and miR-371-5p as the useful diagnostic biomarkers and therapeutic targets in Kawasaki disease. BioMed Research International, 2017: 8257862.
Zhao, J., & Chen, D. (2020). Kawasaki disease: SOCS2-AS1/miR-324-5p/CUEDC2 axis regulates the progression of human umbilical vein endothelial cells. Pediatric Research.

Auteurs

Fuqing Yang (F)

School of Basic Medical Sciences, Qingdao University, Qingdao, China.

Xiang Ao (X)

School of Basic Medical Sciences, Qingdao University, Qingdao, China.

Lin Ding (L)

School of Basic Medical Sciences, Qingdao University, Qingdao, China.

Lin Ye (L)

School of Basic Medical Sciences, Qingdao University, Qingdao, China.

Xuejuan Zhang (X)

Department of General Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.

Lanting Yang (L)

School of Basic Medical Sciences, Qingdao University, Qingdao, China.

Zhonghao Zhao (Z)

School of Basic Medical Sciences, Qingdao University, Qingdao, China.

Jianxun Wang (J)

School of Basic Medical Sciences, Qingdao University, Qingdao, China.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH