Vertebral artery stenosis predicts cerebrovascular diseases following radiotherapy for nasopharyngeal carcinoma.
Atrial fibrillation
Hypertension
Ischemic stroke
Nasopharyngeal carcinoma
Radiotherapy
Vertebral artery stenosis
Journal
Supportive care in cancer : official journal of the Multinational Association of Supportive Care in Cancer
ISSN: 1433-7339
Titre abrégé: Support Care Cancer
Pays: Germany
ID NLM: 9302957
Informations de publication
Date de publication:
Jul 2022
Jul 2022
Historique:
received:
18
11
2021
accepted:
22
03
2022
pubmed:
1
4
2022
medline:
31
5
2022
entrez:
31
3
2022
Statut:
ppublish
Résumé
Radiotherapy for nasopharyngeal carcinoma (NPC) may induce cerebrovascular diseases including ischemic stroke and transient ischemic attack (TIA), which can cause severe disability. However, information on the incidence and predictors of cerebrovascular diseases is scarce. This study aimed to estimate the incidence of cerebrovascular diseases following NPC, and attempts to ascertain the predictors of cerebrovascular diseases to facilitate early prevention. We performed a retrospective cohort study on 655 NPC patients who received radiotherapy between 2006 and 2018 in a medical center. This study analyzed the incidence, clinical and imaging presentation of patients with cerebrovascular diseases. Cox proportional hazard model was used to identify risk factors associated with cerebrovascular diseases following radiotherapy. There were 14 patients who developed an ischemic stroke, and 3 patients developed a TIA after a mean follow-up of 5.8 years. Most ischemic events were from large-artery atherosclerosis (76.5%), and the most common symptom of ischemic stroke was unilateral limb weakness (57.1%). The cumulative incidence of ischemic stroke or TIA 15 years after radiotherapy was 9.1% (95% confidence interval [CI] = 4.7-17.2%). Multivariate Cox regression identified vertebral artery stenosis (HR: 18.341; 95% CI = 3.907-86.100; P < 0.001), atrial fibrillation (HR: 13.314; 95% CI = 1.306-135.764; P = 0.029), and hypertension (HR: 7.511; 95% CI = 1.472-38.320; P = 0.015) as independent predictors of ischemic stroke or TIA. Our study found that NPC patients with vertebral artery stenosis, atrial fibrillation, or hypertension carry a higher risk for ischemic stroke or TIA. Regular assessment of vertebral artery after radiotherapy was suggested.
Identifiants
pubmed: 35357575
doi: 10.1007/s00520-022-07011-8
pii: 10.1007/s00520-022-07011-8
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
5821-5830Subventions
Organisme : Taipei Veterans General Hospital
ID : V109B-008
Organisme : Taipei Veterans General Hospital
ID : V110B-025
Commentaires et corrections
Type : ErratumIn
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Chan AT (2010) Nasopharyngeal carcinoma. Ann Oncol 21(Suppl 7):vii308–vii312. https://doi.org/10.1093/annonc/mdq277
doi: 10.1093/annonc/mdq277
pubmed: 20943634
Wu L, Li C, Pan L (2018) Nasopharyngeal carcinoma: a review of current updates. Exp Ther Med 15:3687–3692. https://doi.org/10.3892/etm.2018.5878
doi: 10.3892/etm.2018.5878
pubmed: 29556258
Zhou L, Xing P, Chen Y, Xu X, Shen J, Lu X (2015) Carotid and vertebral artery stenosis evaluated by contrast-enhanced MR angiography in nasopharyngeal carcinoma patients after radiotherapy: a prospective cohort study. Br J Radiol 88:20150175. https://doi.org/10.1259/bjr.20150175
doi: 10.1259/bjr.20150175
pubmed: 25875781
Arthurs E, Hanna TP, Zaza K, Peng Y, Hall SF (2016) Stroke after radiation therapy for head and neck cancer: what is the risk? Int J Radiat Oncol Biol Phys 96:589–596. https://doi.org/10.1016/j.ijrobp.2016.07.007
doi: 10.1016/j.ijrobp.2016.07.007
pubmed: 27681754
Prabhakaran S, Ruff I, Bernstein RA (2015) Acute stroke intervention: a systematic review. JAMA 313:1451–1462. https://doi.org/10.1001/jama.2015.3058
doi: 10.1001/jama.2015.3058
pubmed: 25871671
Lee HC, Chang KC, Huang YC et al (2013) Readmission, mortality, and first-year medical costs after stroke. J Chin Med Assoc 76:703–714. https://doi.org/10.1016/j.jcma.2013.08.003
doi: 10.1016/j.jcma.2013.08.003
pubmed: 24075791
Dewilde S, Annemans L, Peeters A et al (2017) Modified Rankin scale as a determinant of direct medical costs after stroke. Int J Stroke 12:392–400. https://doi.org/10.1177/1747493017691984
doi: 10.1177/1747493017691984
pubmed: 28164742
Weimar C, Benemann J, Michalski D et al (2010) Prediction of recurrent stroke and vascular death in patients with transient ischemic attack or nondisabling stroke: a prospective comparison of validated prognostic scores. Stroke 41:487–493. https://doi.org/10.1161/STROKEAHA.109.562157
doi: 10.1161/STROKEAHA.109.562157
pubmed: 20056932
Zhang C, Wang Y, Zhao X et al (2017) Prediction of recurrent stroke or transient ischemic attack after noncardiogenic posterior circulation ischemic stroke. Stroke 48:1835–1841. https://doi.org/10.1161/STROKEAHA.116.016285
doi: 10.1161/STROKEAHA.116.016285
pubmed: 28626054
Carmody BJ, Arora S, Avena R et al (1999) Accelerated carotid artery disease after high-dose head and neck radiotherapy: is there a role for routine carotid duplex surveillance? J Vasc Surg 30:1045–1051. https://doi.org/10.1016/s0741-5214(99)70042-x
doi: 10.1016/s0741-5214(99)70042-x
pubmed: 10587388
Cugini G, Sciacero P, Geda C, Ferrari G (1990) Injury of the large vessels of the neck caused by radiation of neoplasms of the otorhinolaryngologic region: a study using Doppler echography. Radiol Med 80:56–62
pubmed: 2217943
Cheng SW, Wu LL, Ting AC, Lau H, Lam LK, Wei WI (1999) Irradiation-induced extracranial carotid stenosis in patients with head and neck malignancies. Am J Surg 178:323–328. https://doi.org/10.1016/s0002-9610(99)00184-1
doi: 10.1016/s0002-9610(99)00184-1
pubmed: 10587192
Huang TL, Hsu HC, Chen HC et al (2013) Long-term effects on carotid intima-media thickness after radiotherapy in patients with nasopharyngeal carcinoma. Radiat Oncol 8:261. https://doi.org/10.1186/1748-717X-8-261
doi: 10.1186/1748-717X-8-261
pubmed: 24196030
Fokkema M, den Hartog AG, van Lammeren GW et al (2012) Radiation-induced carotid stenotic lesions have a more stable phenotype than de novo atherosclerotic plaques. Eur J Vasc Endovasc Surg 43:643–648. https://doi.org/10.1016/j.ejvs.2012.02.023
doi: 10.1016/j.ejvs.2012.02.023
pubmed: 22436263
Tallarita T, Oderich GS, Lanzino G et al (2011) Outcomes of carotid artery stenting versus historical surgical controls for radiation-induced carotid stenosis. J Vasc Surg 53(629–636):e1-5. https://doi.org/10.1016/j.jvs.2010.09.056
doi: 10.1016/j.jvs.2010.09.056
Pistoia F, Sacco S, Tiseo C, Degan D, Ornello R, Carolei A (2016) The epidemiology of atrial fibrillation and stroke. Cardiol Clin 34:255–268. https://doi.org/10.1016/j.ccl.2015.12.002
doi: 10.1016/j.ccl.2015.12.002
pubmed: 27150174
Engdahl J, Andersson L, Mirskaya M, Rosenqvist M (2013) Stepwise screening of atrial fibrillation in a 75-year-old population: implications for stroke prevention. Circulation 127:930–937. https://doi.org/10.1161/CIRCULATIONAHA.112.126656
doi: 10.1161/CIRCULATIONAHA.112.126656
pubmed: 23343564
Hayden DT, Hannon N, Callaly E et al (2015) Rates and determinants of 5-year outcomes after atrial fibrillation-related stroke: a population study. Stroke 46:3488–3493. https://doi.org/10.1161/STROKEAHA.115.011139
doi: 10.1161/STROKEAHA.115.011139
pubmed: 26470776
Herrmann J (2020) Adverse cardiac effects of cancer therapies: cardiotoxicity and arrhythmia. Nat Rev Cardiol 17:474–502. https://doi.org/10.1038/s41569-020-0348-1
doi: 10.1038/s41569-020-0348-1
pubmed: 32231332
Mery B, Guichard JB, Guy JB et al (2017) Atrial fibrillation in cancer patients: hindsight, insight and foresight. Int J Cardiol 240:196–202. https://doi.org/10.1016/j.ijcard.2017.03.132
doi: 10.1016/j.ijcard.2017.03.132
pubmed: 28390744
McArdle PF, Kittner SJ, Ay H et al (2014) Agreement between TOAST and CCS ischemic stroke classification: the NINDS SiGN study. Neurology 83:1653–1660. https://doi.org/10.1212/WNL.0000000000000942
doi: 10.1212/WNL.0000000000000942
pubmed: 25261504
Aiyagari V, Gorelick PB (2009) Management of blood pressure for acute and recurrent stroke. Stroke 40:2251–2256. https://doi.org/10.1161/STROKEAHA.108.531574
doi: 10.1161/STROKEAHA.108.531574
pubmed: 19390077
Wajngarten M, Silva GS (2019) Hypertension and stroke: update on treatment. Eur Cardiol 14:111–115. https://doi.org/10.15420/ecr.2019.11.1
doi: 10.15420/ecr.2019.11.1
pubmed: 31360232
Brandes RP (2014) Endothelial dysfunction and hypertension. Hypertension 64:924–928. https://doi.org/10.1161/HYPERTENSIONAHA.114.03575 (10.1161/01.hyp.25.2.155)
doi: 10.1161/HYPERTENSIONAHA.114.03575
pubmed: 25156167
Bezerra DC, Sharrett AR, Matsushita K et al (2012) Risk factors for lacune subtypes in the Atherosclerosis Risk in Communities (ARIC) Study. Neurology 78:102–108. https://doi.org/10.1212/WNL.0b013e31823efc42
doi: 10.1212/WNL.0b013e31823efc42
pubmed: 22170882
Howard G, Banach M, Cushman M et al (2015) Is blood pressure control for stroke prevention the correct goal? The lost opportunity of preventing hypertension. Stroke 46:1595–1600. https://doi.org/10.1161/STROKEAHA.115.009128
doi: 10.1161/STROKEAHA.115.009128
pubmed: 25953369
Cai J, Cheng J, Li H et al (2019) A nomogram for the prediction of cerebrovascular disease among patients with brain necrosis after radiotherapy for nasopharyngeal carcinoma. Radiother Oncol 132:34–41. https://doi.org/10.1016/j.radonc.2018.11.008
doi: 10.1016/j.radonc.2018.11.008
pubmed: 30825967