Dual Delivery of BMP2 and IGF1 Through Injectable Hydrogel Promotes Cranial Bone Defect Healing.
bone formation
bone morphogenetic protein
craniomaxillofacial bone defect
hydrogel
insulin-like growth factor
Journal
Tissue engineering. Part A
ISSN: 1937-335X
Titre abrégé: Tissue Eng Part A
Pays: United States
ID NLM: 101466659
Informations de publication
Date de publication:
09 2022
09 2022
Historique:
pubmed:
1
4
2022
medline:
14
9
2022
entrez:
31
3
2022
Statut:
ppublish
Résumé
Critical-sized cranial bone defect remains a great clinical challenge. With advantages in regenerative medicine, injectable hydrogels incorporated with bioactive molecules show great potential in promoting cranial bone repair. Recently, we developed a dual delivery system by sequential release of bone morphogenetic protein 2 (BMP2) followed by insulin-like growth factor 1 (IGF1) in microparticles (MPs), and an injectable alginate/collagen (alg/col)-based hydrogel. In this study, we aim to evaluate the effect of dual delivery of BMP2 and IGF1 in MPs through the injectable hydrogel in critical-sized cranial bone defect healing. The gelatin MPs loaded with BMP2 and poly(lactic-co-glycolic acid)-poly(ethylene glycol)-carboxyl (PLGA-PEG-COOH) MPs loaded with IGF1 were prepared, respectively. The encapsulation efficiency and release profile of growth factors in MPs were measured. A cranial defect model was applied to evaluate the efficacy of the dual delivery system in bone regeneration. Adult Sprague Dawley rats were subjected to osteotomy to make an ⌀8-mm cranial defect. The injectable hydrogel containing MPs loaded with BMP2 (2 μg), IGF1 (2 μg), or a combination of BMP2 (1 μg) and IGF1 (1 μg) were injected to the defect site. New bone formation was evaluated by microcomputed tomography, histological analysis, and immunohistochemistry after 4 or 8 weeks. Data showed that dual delivery of the low-dose BMP2 and IGF1 in MPs through alg/col-based hydrogel successfully restored cranial bone as early as 4 weeks after implantation, whose effect was comparable to the single delivery of high-dose BMP2 in MPs. In conclusion, this study suggests that dual delivery of BMP2 and IGF1 in MPs in alg/col-based hydrogel achieves early bone regeneration in critical-sized bone defect, with advantage in reducing the dose of BMP2. Impact Statement Sequential release of bone morphogenetic protein 2 (BMP2) followed by insulin-like growth factor 1 (IGF1) in two different microparticles promotes critical-sized bone defect healing. This dual delivery system reduces the dose of BMP2 by supplementing IGF1, which may diminish the potential side effects of BMP2.
Identifiants
pubmed: 35357948
doi: 10.1089/ten.TEA.2022.0002
pmc: PMC9508443
doi:
Substances chimiques
Alginates
0
Bone Morphogenetic Protein 2
0
Hydrogels
0
Polyethylene Glycols
3WJQ0SDW1A
Insulin-Like Growth Factor I
67763-96-6
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
760-769Subventions
Organisme : NIAMS NIH HHS
ID : U01 AR069395
Pays : United States
Organisme : NIAMS NIH HHS
ID : R01 AR072613
Pays : United States
Organisme : NIAMS NIH HHS
ID : R01 AR074458
Pays : United States
Références
J Mater Chem B. 2014 Jan 21;2(3):295-304
pubmed: 32261508
Exp Gerontol. 2002 Apr;37(4):553-65
pubmed: 11830358
Cell Tissue Bank. 2004;5(4):223-30
pubmed: 15591825
Adv Mater. 2009 Sep 4;21(32-33):3307-29
pubmed: 20882499
J Craniofac Surg. 2014 Sep;25(5):1917-22
pubmed: 25119411
Biomaterials. 2014 Oct;35(31):8829-8839
pubmed: 25047629
Ann Stomatol (Roma). 2014 Jun 18;5(2):66-8
pubmed: 25002920
J Orthop Translat. 2020 Jun 07;24:112-120
pubmed: 32775203
J Pharmacol Toxicol Methods. 2019 Mar - Apr;96:67-77
pubmed: 30738209
Acta Biomater. 2012 May;8(5):1768-77
pubmed: 22293583
Tissue Eng Part A. 2019 Dec;25(23-24):1591-1604
pubmed: 30950322
J Orthop Translat. 2021 Dec 11;31:110-125
pubmed: 34976731
Biochem Biophys Res Commun. 2006 Jul 7;345(3):1177-83
pubmed: 16716263
Implant Dent. 2000;9(2):126-31
pubmed: 11314699
Eur Cell Mater. 2018 Apr 26;35:242-254
pubmed: 29697853
Plast Reconstr Surg Glob Open. 2019 May 07;7(5):e2201
pubmed: 31333936
Health Technol Assess. 2007 Aug;11(30):1-150, iii-iv
pubmed: 17669279
Regen Biomater. 2018 Oct;5(5):283-292
pubmed: 30338126
J Clin Periodontol. 2014 Aug;41(8):827-36
pubmed: 24807100
Materialia (Oxf). 2021 Mar;15:
pubmed: 33367226
Nat Protoc. 2012 Oct;7(10):1918-29
pubmed: 23018195
Neurosurg Focus. 2010 Dec;29(6):E8
pubmed: 21121722
World J Orthop. 2015 Sep 18;6(8):623-8
pubmed: 26396938
Tissue Eng Part A. 2019 Feb;25(3-4):248-256
pubmed: 30234441
J Biomed Mater Res B Appl Biomater. 2008 May;85(2):573-82
pubmed: 17937408
J Mater Chem B. 2015 Apr 21;3(15):3081-3090
pubmed: 32262508
Acta Biomater. 2017 Dec;64:389-400
pubmed: 28963020
Tissue Eng Part B Rev. 2016 Aug;22(4):284-97
pubmed: 26857241
PLoS One. 2018 May 10;13(5):e0197006
pubmed: 29746517
Microsc Microanal. 2014 Aug;20(4):1208-17
pubmed: 24963987
Adv Drug Deliv Rev. 2018 Mar 1;127:167-184
pubmed: 29567395
Biomaterials. 2017 Apr;122:91-104
pubmed: 28110173
Acta Physiol Scand. 2004 Sep;182(1):29-35
pubmed: 15329054
J Mater Chem B. 2016 Apr 14;4(14):2444-2454
pubmed: 32263194
Biomaterials. 2010 Sep;31(26):6772-81
pubmed: 20573393
Part Part Syst Charact. 2020 Oct;37(10):
pubmed: 33384477