PEP-PRED

Channel Machine learning Peptide Server Sodium Toxin

Journal

Computers in biology and medicine
ISSN: 1879-0534
Titre abrégé: Comput Biol Med
Pays: United States
ID NLM: 1250250

Informations de publication

Date de publication:
06 2022
Historique:
received: 08 01 2022
revised: 12 03 2022
accepted: 14 03 2022
pubmed: 1 4 2022
medline: 20 5 2022
entrez: 31 3 2022
Statut: ppublish

Résumé

Voltage-gated sodium channel activity has long been associated with several diseases including epilepsy, chronic pain, cardiovascular diseases, cancers, immune system, neuromuscular and respiratory disorders. The strong participation of these channels in the development of diseases makes them excellent promising therapeutic targets. Voltage-gated Na

Identifiants

pubmed: 35358751
pii: S0010-4825(22)00206-2
doi: 10.1016/j.compbiomed.2022.105414
pii:
doi:

Substances chimiques

Peptides 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

105414

Informations de copyright

Copyright © 2022 Elsevier Ltd. All rights reserved.

Auteurs

Jesús Herrera-Bravo (J)

Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile; Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Chile.

Jorge G Farías (JG)

Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile.

Fernanda Parraguez Contreras (FP)

Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile.

Lisandra Herrera-Belén (L)

Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile; Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile.

Jorge F Beltrán (JF)

Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile. Electronic address: beltran.lissabet.jf@gmail.com.

Articles similaires

Exploring blood-brain barrier passage using atomic weighted vector and machine learning.

Yoan Martínez-López, Paulina Phoobane, Yanaima Jauriga et al.
1.00
Blood-Brain Barrier Machine Learning Humans Support Vector Machine Software

Understanding the role of machine learning in predicting progression of osteoarthritis.

Simone Castagno, Benjamin Gompels, Estelle Strangmark et al.
1.00
Humans Disease Progression Machine Learning Osteoarthritis
Humans Artificial Intelligence Neoplasms Prognosis Image Processing, Computer-Assisted

Classifications MeSH