Effects of Receptor Specificity and Conformational Stability of Influenza A Virus Hemagglutinin on Infection and Activation of Different Cell Types in Human PBMCs.
Animals
Dogs
Hemagglutinin Glycoproteins, Influenza Virus
/ genetics
Hemagglutinins
Humans
Influenza A virus
/ genetics
Leukocytes, Mononuclear
/ metabolism
Madin Darby Canine Kidney Cells
Membrane Proteins
/ genetics
RNA, Messenger
/ metabolism
RNA-Binding Proteins
/ metabolism
Sialic Acids
/ metabolism
Virus Replication
/ genetics
hemagglutinin
influenza
primary immune cells
receptor specificity
tropism
Journal
Frontiers in immunology
ISSN: 1664-3224
Titre abrégé: Front Immunol
Pays: Switzerland
ID NLM: 101560960
Informations de publication
Date de publication:
2022
2022
Historique:
received:
02
12
2021
accepted:
16
02
2022
entrez:
1
4
2022
pubmed:
2
4
2022
medline:
9
4
2022
Statut:
epublish
Résumé
Humans can be infected by zoonotic avian, pandemic and seasonal influenza A viruses (IAVs), which differ by receptor specificity and conformational stability of their envelope glycoprotein hemagglutinin (HA). It was shown that receptor specificity of the HA determines the tropism of IAVs to human airway epithelial cells, the primary target of IAVs in humans. Less is known about potential effects of the HA properties on viral attachment, infection and activation of human immune cells. To address this question, we studied the infection of total human peripheral blood mononuclear cells (PBMCs) and subpopulations of human PBMCs with well characterized recombinant IAVs differing by the HA and the neuraminidase (NA) but sharing all other viral proteins. Monocytes and all subpopulations of lymphocytes were significantly less susceptible to infection by IAVs with avian-like receptor specificity as compared to human-like IAVs, whereas plasmacytoid dendritic cells (pDCs) and myeloid dendritic cells were equally susceptible to IAVs with avian-like and human-like receptor specificity. This tropism correlated with the surface expression of 2-3-linked sialic acids (avian-type receptors) and 2-6-linked sialic acids (human-type receptors). Despite a reduced infectivity of avian-like IAVs for PBMCs, these viruses were not less efficient than human-like IAVs in terms of cell activation as judged by the induction of cellular mRNA of
Identifiants
pubmed: 35359920
doi: 10.3389/fimmu.2022.827760
pmc: PMC8963867
doi:
Substances chimiques
Hemagglutinin Glycoproteins, Influenza Virus
0
Hemagglutinins
0
IFITM3 protein, human
0
Membrane Proteins
0
RNA, Messenger
0
RNA-Binding Proteins
0
Sialic Acids
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
827760Informations de copyright
Copyright © 2022 Dorna, Kaufmann, Bockmann, Raifer, West, Matrosovich and Bauer.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
Viruses. 2018 Aug 10;10(8):
pubmed: 30103427
Am J Pathol. 2010 Apr;176(4):1614-8
pubmed: 20167867
Viruses. 2021 Jul 14;13(7):
pubmed: 34372568
Virology. 2005 Apr 10;334(2):276-83
pubmed: 15780877
Viral Immunol. 2017 Jul/Aug;30(6):398-407
pubmed: 28654310
Biochem Biophys Res Commun. 2015 Jul 31;463(3):211-5
pubmed: 25998389
J Gen Virol. 2017 Oct;98(10):2401-2412
pubmed: 28884667
Hum Pathol. 2009 May;40(5):735-9
pubmed: 19121843
Trends Immunol. 2001 Feb;22(2):83-7
pubmed: 11286708
PLoS One. 2014 Feb 21;9(2):e89529
pubmed: 24586849
J Biol Chem. 1988 Mar 15;263(8):3657-63
pubmed: 3346214
EMBO J. 2014 Apr 16;33(8):823-41
pubmed: 24668228
Viruses. 2018 Sep 13;10(9):
pubmed: 30217093
Front Microbiol. 2019 Sep 11;10:2007
pubmed: 31572308
J Leukoc Biol. 2012 Jul;92(1):97-106
pubmed: 22124137
J Virol. 2019 Aug 13;93(17):
pubmed: 31189708
Acta Pharmacol Sin. 2013 Oct;34(10):1257-69
pubmed: 24096642
Biochim Biophys Acta. 2014 Apr;1838(4):1153-68
pubmed: 24161712
J Virol. 2001 Jul;75(13):5921-9
pubmed: 11390593
J Virol. 2006 Aug;80(15):7469-80
pubmed: 16840327
J Gen Virol. 2017 May;98(5):922-934
pubmed: 28555541
Front Immunol. 2018 Mar 05;9:320
pubmed: 29556226
Trends Microbiol. 2018 Oct;26(10):841-853
pubmed: 29681430
J Infect Dis. 2020 Jul 23;222(4):528-537
pubmed: 32157291
PLoS One. 2017 Apr 27;12(4):e0176903
pubmed: 28448630
Nat Rev Microbiol. 2019 Jan;17(2):67-81
pubmed: 30487536
J Virol. 2020 Apr 16;94(9):
pubmed: 32075928
Annu Rev Virol. 2014 Nov 1;1:261-283
pubmed: 25599080
Blood. 2012 Mar 29;119(13):3128-31
pubmed: 22310910
Cell Microbiol. 2020 May;22(5):e13170
pubmed: 31990121
Biochem Biophys Res Commun. 2015 Aug 28;464(3):888-93
pubmed: 26187669
J Virol. 2019 Dec 12;94(1):
pubmed: 31597765
Virology. 2007 May 10;361(2):384-90
pubmed: 17207830
Vaccine. 2012 Jun 22;30(30):4419-34
pubmed: 22537992
Virology. 2015 May;479-480:234-46
pubmed: 25812763
Hum Vaccin Immunother. 2012 Jan;8(1):7-16
pubmed: 22251997
PLoS Pathog. 2018 Jan 4;14(1):e1006821
pubmed: 29300777
J Mol Biol. 2013 Dec 13;425(24):4937-55
pubmed: 24076421
Curr Top Microbiol Immunol. 2014;385:93-116
pubmed: 25007844
Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4620-4
pubmed: 15070767
J Virol. 2017 Jan 3;91(2):
pubmed: 27807237
Ecohealth. 2016 Mar;13(1):171-98
pubmed: 25630935
Microbiol Immunol. 2016 Oct;60(10):687-693
pubmed: 27730669
J Virol. 2017 May 12;91(11):
pubmed: 28356532
J Gen Virol. 2012 Nov;93(Pt 11):2315-2325
pubmed: 22894921
Nat Immunol. 2015 May;16(5):448-57
pubmed: 25898198
Viruses. 2018 Aug 28;10(9):
pubmed: 30154345
Vaccine. 2012 Jun 19;30(29):4369-76
pubmed: 22682293
J Infect Dis. 1985 Feb;151(2):308-13
pubmed: 3881540
PLoS One. 2021 May 12;16(5):e0251473
pubmed: 33979408
Viruses. 2021 Apr 24;13(5):
pubmed: 33923198
J Virol. 2012 Feb;86(3):1405-10
pubmed: 22090129
Trends Mol Med. 2008 Aug;14(8):351-60
pubmed: 18606570
Glycobiology. 2011 Aug;21(8):988-93
pubmed: 21863598
Biophys J. 2016 Jun 7;110(11):2293-2301
pubmed: 27276248
J Virol. 1997 Apr;71(4):3357-62
pubmed: 9060710
Rev Med Virol. 2002 May-Jun;12(3):159-66
pubmed: 11987141
Curr Top Microbiol Immunol. 2014;385:63-91
pubmed: 25078920
Immunology. 2020 Mar;159(3):245-256
pubmed: 31670391
Cold Spring Harb Perspect Med. 2021 Oct 1;11(10):
pubmed: 32513673
Viruses. 2020 Mar 31;12(4):
pubmed: 32244278
Nature. 2006 May 4;441(7089):101-5
pubmed: 16625202
Trends Microbiol. 2020 Jan;28(1):57-67
pubmed: 31629602
Vaccine. 2017 Aug 16;35(35 Pt B):4629-4636
pubmed: 28712489
J Clin Invest. 1987 Feb;79(2):620-4
pubmed: 3805284
J Virol. 2011 May;85(9):4421-31
pubmed: 21345953
PLoS Pathog. 2019 Jan 14;15(1):e1007532
pubmed: 30640957
Front Immunol. 2018 Aug 08;9:1812
pubmed: 30135686
Infect Immun. 1999 Dec;67(12):6303-8
pubmed: 10569741
PLoS Pathog. 2021 Sep 23;17(9):e1009566
pubmed: 34555124
Viruses. 2019 Jun 12;11(6):
pubmed: 31212878
Curr Pharm Des. 2017;23(18):2616-2622
pubmed: 28302021
Am J Pathol. 2007 Oct;171(4):1215-23
pubmed: 17717141
J Biol Chem. 2021 Jan-Jun;296:100017
pubmed: 33144323
J Virol. 2016 Nov 28;90(24):11157-11167
pubmed: 27707929