Characterization and Survival of Human Infant Testicular Cells After Direct Xenotransplantation.
cryptorchid
gonocyte
immature testis
infertility
spermatogonia
spermatogonial stem cell
transplantation
Journal
Frontiers in endocrinology
ISSN: 1664-2392
Titre abrégé: Front Endocrinol (Lausanne)
Pays: Switzerland
ID NLM: 101555782
Informations de publication
Date de publication:
2022
2022
Historique:
received:
12
01
2022
accepted:
11
02
2022
entrez:
1
4
2022
pubmed:
2
4
2022
medline:
5
4
2022
Statut:
epublish
Résumé
Cryopreservation of prepubertal testicular tissue preserves spermatogonial stem cells (SSCs) that may be used to restore fertility in men at risk of infertility due to gonadotoxic treatments for either a malignant or non-malignant disease. Spermatogonial stem cell-based transplantation is a promising fertility restoration technique. Previously, we performed xenotransplantation of propagated SSCs from prepubertal testis and found human SSCs colonies within the recipient testes six weeks post-transplantation. In order to avoid the propagation step of SSCs Testis biopsies were obtained from 11 infant boys (median age 1.3 years, range 0.5-3.5) with cryptorchidism. Following enzymatic digestion, dissociated single-cell suspensions were prelabeled with green fluorescent dye and directly transplanted into seminiferous tubules of busulfan-treated mice. Six to nine weeks post-transplantation, the presence of gonocytes and SSCs was determined by whole-mount immunofluorescence for a number of germ cell markers (MAGEA, GAGE, UCHL1, SALL4, UTF1, and LIN28), somatic cell markers (SOX9, CYP17A1). Following xenotransplantation human infant germ cells, consisting of gonocytes and SSCs, were shown to settle on the basal membrane of the recipient seminiferous tubules and form SSC colonies with expression of MAGEA, GAGE, UCHL1, SALL4, UTF1, and LIN28. The colonization efficiency was approximately 6%. No human Sertoli cells were detected in the recipient mouse testes. Xenotransplantation, without
Sections du résumé
Background
Cryopreservation of prepubertal testicular tissue preserves spermatogonial stem cells (SSCs) that may be used to restore fertility in men at risk of infertility due to gonadotoxic treatments for either a malignant or non-malignant disease. Spermatogonial stem cell-based transplantation is a promising fertility restoration technique. Previously, we performed xenotransplantation of propagated SSCs from prepubertal testis and found human SSCs colonies within the recipient testes six weeks post-transplantation. In order to avoid the propagation step of SSCs
Methods
Testis biopsies were obtained from 11 infant boys (median age 1.3 years, range 0.5-3.5) with cryptorchidism. Following enzymatic digestion, dissociated single-cell suspensions were prelabeled with green fluorescent dye and directly transplanted into seminiferous tubules of busulfan-treated mice. Six to nine weeks post-transplantation, the presence of gonocytes and SSCs was determined by whole-mount immunofluorescence for a number of germ cell markers (MAGEA, GAGE, UCHL1, SALL4, UTF1, and LIN28), somatic cell markers (SOX9, CYP17A1).
Results
Following xenotransplantation human infant germ cells, consisting of gonocytes and SSCs, were shown to settle on the basal membrane of the recipient seminiferous tubules and form SSC colonies with expression of MAGEA, GAGE, UCHL1, SALL4, UTF1, and LIN28. The colonization efficiency was approximately 6%. No human Sertoli cells were detected in the recipient mouse testes.
Conclusion
Xenotransplantation, without
Identifiants
pubmed: 35360067
doi: 10.3389/fendo.2022.853482
pmc: PMC8960121
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
853482Informations de copyright
Copyright © 2022 Wang, Hildorf, Ntemou, Dong, Pors, Mamsen, Fedder, Hoffmann, Clasen-Linde, Cortes, Thorup and Andersen.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
Hum Reprod. 2018 Apr 1;33(4):636-645
pubmed: 29452353
Biol Reprod. 2003 Mar;68(3):1064-71
pubmed: 12604661
Hum Reprod. 2019 May 1;34(5):795-803
pubmed: 30951144
Cell Tissue Res. 2020 May;380(2):393-414
pubmed: 32337615
Hum Reprod Update. 2020 Apr 15;26(3):368-391
pubmed: 32163572
Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21672-7
pubmed: 20018717
J Urol. 2020 Apr;203(4):832-840
pubmed: 31642739
PLoS One. 2016 Feb 12;11(2):e0148388
pubmed: 26871566
Eur J Pediatr Surg. 2016 Oct;26(5):427-431
pubmed: 27589079
Eur J Pediatr Surg. 2022 Feb;32(1):26-33
pubmed: 34847578
Sex Dev. 2019;13(5-6):246-257
pubmed: 33080598
Front Endocrinol (Lausanne). 2018 Jun 05;9:299
pubmed: 29922233
J Androl. 2008 Jul-Aug;29(4):418-30
pubmed: 18326509
JAMA. 2009 Nov 18;302(19):2127-34
pubmed: 19920237
Stem Cell Res. 2018 May;29:207-214
pubmed: 29730571
Clin Med Insights Reprod Health. 2019 Nov 20;13:1179558119886342
pubmed: 31798308
APMIS. 1998 Jan;106(1):58-62; discussion 62-3
pubmed: 9524562
Reproduction. 2014 Dec;148(6):H1-9
pubmed: 25212783
Fertil Steril. 2017 Jan;107(1):74-82.e7
pubmed: 27793385
Clin Microbiol Rev. 2001 Jan;14(1):1-14
pubmed: 11148000
Obstet Gynecol. 2010 Nov;116(5):1171-83
pubmed: 20966703
Hum Reprod. 2007 Apr;22(4):953-60
pubmed: 17208940
PLoS Genet. 2017 Aug 24;13(8):e1006979
pubmed: 28837588
Biol Reprod. 1998 Dec;59(6):1360-70
pubmed: 9828179
Andrology. 2017 Mar;5(2):248-255
pubmed: 28061524
Cell. 2011 Aug 19;146(4):519-32
pubmed: 21820164
Fertil Steril. 2016 Dec;106(7):1652-1657.e2
pubmed: 27717555
Biol Reprod. 2012 Aug 02;87(2):27
pubmed: 22592495
Prog Neurobiol. 2010 Mar;90(3):327-62
pubmed: 19879917
Nat Rev Cancer. 2014 Jan;14(1):61-70
pubmed: 24304873
Urol Int. 2013;91(4):445-50
pubmed: 24021744
Int J Mol Sci. 2019 Oct 29;20(21):
pubmed: 31671863
Biol Reprod. 2018 Jul 1;99(1):52-74
pubmed: 29617903
J Clin Invest. 2013 Apr;123(4):1833-43
pubmed: 23549087
J Androl. 2000 Nov-Dec;21(6):776-98
pubmed: 11105904
Asian J Androl. 2020 May-Jun;22(3):258-264
pubmed: 31274480
Hum Reprod. 2010 May;25(5):1104-12
pubmed: 20208059
Fertil Steril. 2014 Aug;102(2):566-580.e7
pubmed: 24890267
Int J Cancer. 2000 Feb 15;85(4):460-5
pubmed: 10699915
Hum Reprod. 2008 Oct;23(10):2194-201
pubmed: 18611917
Reproduction. 2015 Apr;149(4):R159-67
pubmed: 25504872
Fertil Steril. 2002 Dec;78(6):1225-33
pubmed: 12477516
J Pediatr Surg. 2020 Jul;55(7):1201-1210
pubmed: 31327540
Reprod Biomed Online. 2019 Sep;39(3):383-401
pubmed: 31315814
Biol Reprod. 2006 Jul;75(1):68-74
pubmed: 16598026
Mol Reprod Dev. 1999 Jun;53(2):142-8
pubmed: 10331452
Hum Reprod. 2006 Feb;21(2):484-91
pubmed: 16210383
Bone Marrow Transplant. 2014 Apr;49(4):477-84
pubmed: 24419521
Mol Hum Reprod. 2012 Oct;18(10):477-88
pubmed: 22689537
Nat Commun. 2018 Oct 22;9(1):4379
pubmed: 30348976
Lancet. 2002 Aug 3;360(9330):361-7
pubmed: 12241775
Hum Reprod. 2019 Jun 4;34(6):966-977
pubmed: 31111889
Int Urol Nephrol. 1989;21(2):159-67
pubmed: 2744988
Cells Tissues Organs. 2012;196(3):206-20
pubmed: 22572102
Nat Commun. 2018 Dec 17;9(1):5339
pubmed: 30559363