Deep-Precognitive Diagnosis: Preventing Future Pandemics by Novel Disease Detection With Biologically-Inspired Conv-Fuzzy Network.

COVID-19 Deep learning computer-aided diagnosis medical imaging pandemics

Journal

IEEE access : practical innovations, open solutions
ISSN: 2169-3536
Titre abrégé: IEEE Access
Pays: United States
ID NLM: 101639462

Informations de publication

Date de publication:
2022
Historique:
entrez: 1 4 2022
pubmed: 2 4 2022
medline: 2 4 2022
Statut: ppublish

Résumé

Deep learning-based Computer-Aided Diagnosis has gained immense attention in recent years due to its capability to enhance diagnostic performance and elucidate complex clinical tasks. However, conventional supervised deep learning models are incapable of recognizing novel diseases that do not exist in the training dataset. Automated early-stage detection of novel infectious diseases can be vital in controlling their rapid spread. Moreover, the development of a conventional CAD model is only possible after disease outbreaks and datasets become available for training (viz. COVID-19 outbreak). Since novel diseases are unknown and cannot be included in training data, it is challenging to recognize them through existing supervised deep learning models. Even after data becomes available, recognizing new classes with conventional models requires a complete extensive re-training. The present study is the

Identifiants

pubmed: 35360503
doi: 10.1109/access.2022.3153059
pmc: PMC8967064
mid: NIHMS1786284
doi:

Types de publication

Journal Article

Langues

eng

Pagination

23167-23185

Subventions

Organisme : NIMH NIH HHS
ID : K01 MH123896
Pays : United States
Organisme : NIGMS NIH HHS
ID : P41 GM103712
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM134020
Pays : United States

Déclaration de conflit d'intérêts

CONFLICTS OF INTEREST The authors hereby declare that there is no conflict of interest.

Références

IEEE Access. 2020 Sep 18;8:171575-171589
pubmed: 34976555
IEEE Access. 2021 Feb 22;9:36019-36037
pubmed: 34812381
Soft comput. 2020 Aug 28;:1-9
pubmed: 32904395
IEEE Trans Med Imaging. 2020 Aug;39(8):2688-2700
pubmed: 32396075
Chaos Solitons Fractals. 2020 Oct;139:110059
pubmed: 32834612
Lancet Infect Dis. 2020 May;20(5):533-534
pubmed: 32087114
Eur Radiol. 2020 Aug;30(8):4407-4416
pubmed: 32215691
Bioinformatics. 2021 Feb 23;:
pubmed: 33620460
EClinicalMedicine. 2019 Jun 22;11:54-64
pubmed: 31312805
Health Inf Sci Syst. 2021 Apr 1;9(1):15
pubmed: 33824721
Radiographics. 2004 Mar-Apr;24(2):553-63
pubmed: 15026600
Diagn Interv Radiol. 2016 Jul-Aug;22(4):390-4
pubmed: 27306659
Comput Biol Med. 2019 Mar;106:24-30
pubmed: 30665138
Int Orthop. 2020 Aug;44(8):1539-1542
pubmed: 32462314
Euro Surveill. 2020 Jan;25(3):
pubmed: 31992387
N Engl J Med. 2020 Feb 20;382(8):727-733
pubmed: 31978945
J Am Med Inform Assoc. 2013 Jan 1;20(1):117-21
pubmed: 22955496
Radiology. 2003 Aug;228(2):395-400
pubmed: 12738877
BMJ. 2020 May 12;369:m1808
pubmed: 32398230
AJR Am J Roentgenol. 2004 Jan;182(1):49-56
pubmed: 14684511
Comput Biol Med. 2020 Jun;121:103792
pubmed: 32568675
Lancet Infect Dis. 2020 Apr;20(4):425-434
pubmed: 32105637
Am J Emerg Med. 2013 Feb;31(2):401-5
pubmed: 23083885
Comput Biol Med. 2020 Jun;121:103805
pubmed: 32568679
Int J Med Inform. 2019 Sep;129:413-422
pubmed: 31445285
IEEE Access. 2020 Dec 14;8:226811-226827
pubmed: 34786299
AJR Am J Roentgenol. 2015 Apr;204(4):736-42
pubmed: 25615627
Chaos Solitons Fractals. 2020 Nov;140:110190
pubmed: 32836918
Nature. 2020 Jan;577(7792):706-710
pubmed: 31942072
Lancet. 2020 Feb 15;395(10223):497-506
pubmed: 31986264
IEEE/ACM Trans Comput Biol Bioinform. 2022 Jan-Feb;19(1):209-219
pubmed: 33729943
Int J Mach Learn Cybern. 2021;12(11):3235-3248
pubmed: 33727984
IEEE Trans Neural Netw. 1992;3(5):776-86
pubmed: 18276476
IEEE Access. 2020 May 14;8:91916-91923
pubmed: 34192100
Clin Imaging. 2020 Aug;64:35-42
pubmed: 32302927
Inform Med Unlocked. 2020;20:100427
pubmed: 32953971
IEEE Trans Neural Netw. 2000;11(3):769-83
pubmed: 18249803
IEEE Access. 2021 Feb 23;9:35501-35513
pubmed: 34976572
AJR Am J Roentgenol. 2014 Oct;203(4):782-7
pubmed: 24918624

Auteurs

Aviral Chharia (A)

Mechanical Engineering Department, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India.

Rahul Upadhyay (R)

Electronics and Communication Engineering Department, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India.

Vinay Kumar (V)

Electronics and Communication Engineering Department, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India.

Chao Cheng (C)

Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.

Jing Zhang (J)

Department of Computer Science, University of California at Irvine, Irvine, CA 92697, USA.

Tianyang Wang (T)

Department of Computer Science and Information Technology, Austin Peay State University, Clarksville, TN 37044, USA.

Min Xu (M)

Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
Computer Vision Department, Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, United Arab Emirates.

Classifications MeSH