Wheat growth monitoring and yield estimation based on remote sensing data assimilation into the SAFY crop growth model.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
31 03 2022
Historique:
received: 08 10 2021
accepted: 22 03 2022
entrez: 1 4 2022
pubmed: 2 4 2022
medline: 5 4 2022
Statut: epublish

Résumé

Crop growth monitoring and yield estimate information can be obtained via appropriate metrics such as the leaf area index (LAI) and biomass. Such information is crucial for guiding agricultural production, ensuring food security, and maintaining sustainable agricultural development. Traditional methods of field measurement and monitoring typically have low efficiency and can only give limited untimely information. Alternatively, methods based on remote sensing technologies are fast, objective, and nondestructive. Indeed, remote sensing data assimilation and crop growth modeling represent an important trend in crop growth monitoring and yield estimation. In this study, we assimilate the leaf area index retrieved from Sentinel-2 remote sensing data for crop growth model of the simple algorithm for yield estimation (SAFY) in wheat. The SP-UCI optimization algorithm is used for fine-tuning for several SAFY parameters, namely the emergence date (D

Identifiants

pubmed: 35361910
doi: 10.1038/s41598-022-09535-9
pii: 10.1038/s41598-022-09535-9
pmc: PMC8971471
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

5473

Informations de copyright

© 2022. The Author(s).

Références

Ortiz, R., Sayre, K. D., Govaerts, B., Gupta, R. & Reynolds, M. Climate change: Can wheat beat the heat. Agric. Ecosyst. Environ. 126, 46–58 (2008).
doi: 10.1016/j.agee.2008.01.019
Yu, Z. W. Introduction to Crop Cultivation. (China Agriculture Press, 2013).
Huang, J. F., Wang, Y., Wang, F. M. & Liu, Z. Red edge characteristics and leaf area index estimation model using hyperspectral data for rape. Trans. Chin. Soc. Agric. Eng. 22, 22–26 (2006).
Su, W., Zhan, J. G., Zhang, M. Z., Wu, D. & Zhang, R. Estimation method of crop leaf area index based on airborne LiDAR data. Trans. Chin. Soc. Agric. Mach. 47, 272–277 (2016).
Fieuzal, R. & Baup, F. Estimation of leaf area index and crop height of sunflowers using multi-temporal optical and SAR satellite data. Int. J. Remote Sens. 37, 1–30 (2016).
doi: 10.1080/01431161.2016.1176276
Liu, J., Pang, X. & Li, Y. R. Inversion study on leaf area index of summer maize using remote sensing. Trans. Chin. Soc. Agric. Mach. 47, 309–317 (2016).
Li, S. M., Li, H., Sun, D. F. & Zhou, L. D. Estimation of regional leaf area index by remote sensing inversion of PROSAIL canopy spectral model. Spectrosc. Spectr. Anal. 29, 2725–2729 (2009).
Wang, L. G., Tian, Y. C., Zhu, Y., Yao, X. & Cao, Y. Estimation of winter wheat leaf area index by fusing different spatial and temporal resolution remote sensing data. Trans. Chin. Soc. Agric. Eng. 28, 118–124 (2012).
Thenkabail, P. S., Smith, R. B. & Pauw, E. D. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sens. Environ. 71, 158–182 (2000).
doi: 10.1016/S0034-4257(99)00067-X
Takahashi, W., Cong, V. N., Kawaguchi, S., Minamiyama, M. & Ninomiya, S. Statistical models for prediction of dry weight and nitrogen accumulation based on visible and near-infrared hyperspectral reflectance of rice canopies. Plant Prod. Sci. 3, 377–386 (2000).
doi: 10.1626/pps.3.377
Blackard, J. A., Finco, M. V. & Helmer, E. H. Mapping US forest biomass using nationwide forest inventory data and moderate resolution information. Remote Sens. Environ. 112, 1658–1677 (2008).
doi: 10.1016/j.rse.2007.08.021
Gao, M. L., Zhao, W. J. & Gong, Z. N. The study of vegetation biomass inversion based on the HJ satellite data in Yellow River wetland. Actaecol. Sin. 33, 542–553 (2013).
Li, W. et al. Remote estimation of canopy height and aboveground biomass of maize using high-resolution stereo images from a low-cost unmanned aerial vehicle system. Ecol. Indic. 67, 637–648 (2016).
doi: 10.1016/j.ecolind.2016.03.036
Zheng, L., Zhu, D., Dong, D., Zhang, B. & Zhao, C. Monitoring of winter wheat aboveground fresh biomass based on multi-information fusion technology. Spectrosc. Spectr. Anal. 36, 1818–1825 (2016).
Zhang, L. X., Chen, Y. Q. & Li, Y. X. Estimateing above ground biomass of winter wheat at early growth stages based on visual spectral. Spectrosc. Spectr. Anal. 39, 2501–2506 (2019).
Casanova, D., Epema, G. F. & Goudriaan, J. Monitoring rice reflectance at field level for estimating biomass and LAI. Field Crop Res. 55, 83–92 (1998).
doi: 10.1016/S0378-4290(97)00064-6
Chen, L. F., Gao, Y. H., Cheng, Y., Wei, Z. & Tian, G. Biomass estimation and uncertainty analysis based on CBERS-02 CCD camera data and field measurement Science in China. Eng. Mater. Sci. 48, 116–128 (2005).
Barati, S., Rayegani, B., Saati, M., Sharifi, A. & Nasri, M. Comparison the accuracies of different spectral indices for estimation of vegetation cover fraction in sparse vegetated areas. Egypt. J. Remote Sens. Space Sci. 14, 49–56 (2011).
Iryna, D., Peng, G. & Lin, W. Object-based analysis and change detection of major wetland cover types and their classification uncertainty during the low water period at Poyang Lake, China. Remote Sens. Environ. 115, 3220–3236 (2011).
doi: 10.1016/j.rse.2011.07.006
Newnham, G. J., Verbesselt, J., Grant, I. F. & Anderson, S. A. Relative greenness index for assessing curing of grassland fuel. Remote Sens. Environ. 115, 1456–1463 (2011).
doi: 10.1016/j.rse.2011.02.005
Bao, Y. S., Gao, W. & Gao, Z. Q. Estimation of winter wheat biomass based on remote sensing data at various spatial and spectral resolutions. Front. Earth Sci. China 3, 118–128 (2009).
doi: 10.1007/s11707-009-0012-x
Tan, C. W., Wang, J. H., Zhao, C. J., Wang, Y. & Guo, W. Monitoring wheat main growth parameters at anthesis stage by Landsat TM. Trans. CSAE. 27, 224–230 (2011).
Gao, S., Niu, Z. & Huang, N. Estimating the Leaf Area Index, height and biomass of maize using HJ-1 and RADARSAT-2. Int. J. Appl. Earth Observ. Geoinf. 24, 1–8 (2013).
Lu, G. Z. et al. Inversion of soybean fresh biomass based on multi-payload unmanned aerial vehicles (UAVs). Soybean Sci. 36, 41–50 (2017).
Liu, F., Feng, Z. K., Zhao, F. & Song, Y. Biomass inversion study of ZY-3 remote sensing satellite imagery. J. Northwest For. Univ. 30, 175–181 (2015).
Wu, Q. et al. A tentative study on utilization of canopy hyperspectral reflectance to estimate canopy growth and seed yield in soybean. Acta Agron. Sin. 39, 309–318 (2013).
doi: 10.3724/SP.J.1006.2013.00309
Gao, Z. L., Xu, X. G., Wang, J. H., Jin, H. & Yang, H. Cotton yield estimation based on similarity analysis of time-series NDVI. Trans. CSAE. 28, 148–153 (2012).
Ren, J. Q., Chen, Z. X., Zhou, Q. B., Liu, J. & Tang, H. MODIS vegetation index data used for estimating corn yield in USA. J. Remote Sens. 19, 568–577 (2015).
Akhand, K., Nizamuddin, M., Roytman, L., & Kogan, F. Using remote sensing satellite data and artificial neural network for prediction of potato yield in Bangladesh. SPIE Opt. Eng. Appl. 9975, 997508-997508-15 (2016).
Li, J. L., Guo, Q. L. & Peng, J. Y. Remote sensing estimation model of Henan province winter wheat yield based on MODIS data. Ecol. Environ. Sci. 21, 1665–1669 (2012).
Sun, L. et al. Daily mapping of 30 m LAI and NDVI for grape yield prediction in California vineyards. Remote Sens. 9, 317 (2017).
doi: 10.3390/rs9040317
Chen, P. F., Yang, F. & Du, J. Yield forecasting for winter wheat using time series NDVI from HJ satellite. Trans. Chin. Soc. Agric. Eng. 29, 124–131 (2013).
Ou, W. H., Shu, W., Xue, W. Z. & Xia, X. Selection of optimum phase for yield estimation of three major crops based on HJ-1 satellite images. Trans. Chin. Soc. Agric. Eng. 26, 176–182 (2010).
Song, H. Y., Hu, X. K. & Peng, X. Crop nitrogen content deagnosis and yield estimation in ground cover rice production system based on hyperspectral data. J. China Agric. Univ. 21, 27–34 (2016).
Zhao, X. Q. et al. Estimation of soybean breeding yield based on optimization of spatial scale of UAV hyperspectral image. Trans. Chin. Soc. Agric. Eng. 33, 110–116 (2017).
Huang, J. X., Huang, H., Ma, H. Y., Zhou, W. & Zhu, D. Review on data assimilation of remote sensing and crop growth models. Trans. Chin. Soc. Agric. Eng. 34, 144–156 (2018).
Wu, L., Bai, J. H., Xiao, Q., Du, Y. & Xu, L. Research progress and prospect on combining crop growth models with parameters derived from quantitative remote sensing. Trans. Chin. Soc. Agric. Eng. 33, 155–166 (2017).
Liu, K., Zhou, Q. B., Wu, W. B., Chen, Z. & Tang, X. Comparison between multispectral and hyperspectral remote sensing for LAI estimation. Trans. Chin. Soc. Agric. Eng. 32, 155–162 (2016).
Pan, H. Z. & Chen, Z. X. Application of UAV hypersectral remote sensing in winter wheat leaf area index inversion. Chin. J. Agric. Resour. Reg. Plan. 39, 32–37 (2018).
Baret, F., Hagolle, O. & Geiger, B. LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION. Remote Sens. Environ. 110, 275–286 (2007).
doi: 10.1016/j.rse.2007.02.018
Hansen, J. W. & Jones, J. W. Scaling-up crop models for climate variability applications. Agric. Syst. 65, 43–72 (2000).
doi: 10.1016/S0308-521X(00)00025-1
Li, C. J., Wang, J. H., Wang, X., Liu, F. & Li, R. Methods for integration of remote sensing data and crop model and their prospects in agricultural application. Chin. J. Agric. Resour. Reg. Plan. 8, 295–301 (2008).
Yao, F., Tang, Y. & Wang, P. Estimation of maize yield by using a process-based model and remote sensing data in the Northeast China Plain. Phys. Chem. Earth Parts A B C. 87, 142–152 (2015).
doi: 10.1016/j.pce.2015.08.010
Tripathy, R. et al. Forecasting wheat yield in Punjab state of India bycombining crop simulation model WOFOST and remotely sensed inputs. Remote Sens. Lett. 4, 19–28 (2013).
doi: 10.1080/2150704X.2012.683117
Curnel, Y., de Wit, A. J., Duveiller, G. & Defourny, P. Potential performances of remotely sensed LAI assimilation in WOFOST model based on an OSS Experiment. Agric. For. Meteorol. 151, 1843–1855 (2011).
doi: 10.1016/j.agrformet.2011.08.002
Ma, G. et al. Assimilation of MODIS-LAI into the WOFOST model for forecasting regional winter wheat yield. Math. Comput. Model. 58, 634–643 (2013).
doi: 10.1016/j.mcm.2011.10.038
Dente, L., Satalino, G., Mattia, F. & Rinaldi, M. Assimilation of leaf area index derived from ASAR and MERIS data into CERES-Wheat model to map wheat yield. Remote Sens. Environ. 112, 1395–1407 (2008).
doi: 10.1016/j.rse.2007.05.023
Silvestro, P. C., Pignatti, S. & Pascucci, S. Estimating wheat yield in China at the field and district scale from the assimilation of satellite data into the Aquacrop and simple algorithm for yield (SAFY) models. Remote Sens. 9, 509 (2017).
doi: 10.3390/rs9050509
Duchemin, B., Maisongrande, P., Boulet, G. & Benhadj, I. A simple algorithm for yield estimates: Evaluation for semi-arid irrigated winter wheat monitored with green leaf area index. Environ. Model. Softw. 23, 876–892 (2008).
doi: 10.1016/j.envsoft.2007.10.003
Song, Y., Wang, J., Shang, J. & Liao, C. Using UAV-based SOPC derived LAI and SAFY model for biomass and yield estimation of winter wheat. Remote Sens. 12, 2378 (2020).
doi: 10.3390/rs12152378
Peng, X., Han, W., Ao, J. & Wang, Y. Assimilation of LAI derived from UAV multispectral data into the SAFY model to estimate maize yield. Remote Sens. 13, 1094 (2021).
doi: 10.3390/rs13061094
Pask, A. J. D., Pietragalla, J., Mullan, D. M. & Reynolds, M. P. Physiological breeding II: A field guide to wheat phenotyping. CIMMYT Mexico DF (Mexico). 4, 132 (2012).
Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002).
doi: 10.1016/S0034-4257(02)00096-2
Jiang, Z. et al. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 112, 3833–3845 (2008).
doi: 10.1016/j.rse.2008.06.006
Chen, J. M. Evaluation of vegetation indices and a modified simple ratio for boreal applications. Can. J. Remote Sens. 22, 229–242 (1996).
doi: 10.1080/07038992.1996.10855178
Rouse, J. W. et al. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ. 351, 309 (1974).
Rondeaux, G., Steven, M. & Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 55, 95–107 (1996).
doi: 10.1016/0034-4257(95)00186-7
Jordan, C. F. Derivation of leaf-area index from quality of light on the forest floor. Ecology 50, 663–666 (1969).
doi: 10.2307/1936256
Chu, W., Gao, X. & Sorooshian, S. A solution to the crucial problem of population degeneration in high-dimensional evolutionary optimization. IEEE Syst. J. 5, 362–373 (2011).
doi: 10.1109/JSYST.2011.2158682
Duan, Q. Y., Gupta, V. K. & Sorooshian, S. Shuffled complex evolution approach for effective and efficient global minimization. J. Optim. Theory Appl. 76, 501–521 (1993).
doi: 10.1007/BF00939380
Verrelst, J. et al. Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods—A comparison. ISPRS J. Photogramm. Remote Sens. 108, 260–272 (2015).
doi: 10.1016/j.isprsjprs.2015.04.013
Cheng, Z. Q. & Meng, J. H. Research advances and perspectives on crop yield estimation models. Chin. J. Eco-Agric. 23, 402–415 (2015).
Atzberger, C. & Richter, K. Spatially constrained inversion of radiative transfer models for improved LAI mapping from future Sentinel-2 imagery. Remote Sens. Environ. 120, 208–218 (2012).
doi: 10.1016/j.rse.2011.10.035
Darvishzadeh, R. et al. Analysis of Sentinel-2 and RapidEye for retrieval of leaf area index in a saltmarsh using a radiative transfer model. Remote Sens. 11, 671 (2019).
doi: 10.3390/rs11060671
Verrelst, J. et al. Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties—A review. ISPRS J. Photogramm. Remote Sens. 108, 273–290 (2015).
doi: 10.1016/j.isprsjprs.2015.05.005
Chahbi, A. et al. Estimation of the dynamics and yields of cereals in a semi-arid area using remote sensing and the SAFY growth model. Int. J. Remote Sens. 35, 1004–1028 (2014).
doi: 10.1080/01431161.2013.875629
Hadria, R. et al. Potentiality of optical and radar satellite data at high spatio-temporal resolutions for the monitoring of irrigated wheat crops in Morocco. Int. J. Appl. Earth Observ. Geoinf. 12, S32–S37 (2010).
Claverie, M., Demarez, V., Duchemin, B., Hagolle, O. & Ducrot, D. Maize and sunflower biomass estimation in southwest France using high spatial and temporal resolution remote sensing data. Remote Sens. Environ. 124, 844–857 (2012).
doi: 10.1016/j.rse.2012.04.005
Raes, D., Steduto, P., Hsiao, T. C. & Fereres, E. AquaCrop—The FAO crop model to simulate yield response to water: II Main algorithms and software description. Agron. J. 101, 438–447 (2009).
doi: 10.2134/agronj2008.0140s
Dong, T., Liu, J., Qian, B., Zhao, T. & Shang, J. Estimating winter wheat biomass by assimilating leaf area index derived from fusion of Landsat-8 and MODIS data. Int. J. Appl. Earth Observ. Geoinf. 49, 63–74 (2016).
Duchemin, B. et al. A simple algorithm for yield estimates: Evaluation for semi-arid irrigated winter wheat monitored with green leaf area index. Environ. Model. Softw. 23, 876–892 (2008).
doi: 10.1016/j.envsoft.2007.10.003
Steduto, P., Hsiao, T. C. & Raes, D. AquaCrop-the FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agron. J. 101, 426–437 (2009).
doi: 10.2134/agronj2008.0139s
Supit, I. & Hooijer, A. A. System description of the WOFOST 6.0 crop simulation model implemented in CGMS.: Theory and algorithms. Eur. Comm. Jt. Res. Cent. 5, 195–200 (1994).
Jones, C. A. CERES-Maize; a simulation model of maize growth and development. Agron. J. 8, 201–205 (1986).
Kross, A., McNairn, H., Lapen, D., Sunohara, M. & Champagne, C. Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops. Int. J. Appl. Earth Observ. Geoinf. 34, 235–248 (2015).

Auteurs

Chunyan Ma (C)

School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo, 454000, Henan, China. mayan@hpu.edu.cn.

Mingxing Liu (M)

Zhangzhou Institute of Surverying and Mapping, Zhangzhou, 363000, Fujian, China. 1280457281@qq.com.

Fan Ding (F)

School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo, 454000, Henan, China.

Changchun Li (C)

School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo, 454000, Henan, China.

Yingqi Cui (Y)

School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo, 454000, Henan, China.

Weinan Chen (W)

School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo, 454000, Henan, China.

Yilin Wang (Y)

School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo, 454000, Henan, China.

Articles similaires

Genome, Viral Ralstonia Composting Solanum lycopersicum Bacteriophages
Vancomycin Polyesters Anti-Bacterial Agents Models, Theoretical Drug Liberation
Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria
Fragaria Light Plant Leaves Osmosis Stress, Physiological

Classifications MeSH