Exploiting the antibacterial mechanism of phenazine substances from Lysobacter antibioticus 13-6 against Xanthomonas oryzae pv. oryzicola.

Lysobacter antibioticus Xanthomonas oryzae pv. oryzicola biological control phenazine substances transcriptomic analysis

Journal

Journal of microbiology (Seoul, Korea)
ISSN: 1976-3794
Titre abrégé: J Microbiol
Pays: Korea (South)
ID NLM: 9703165

Informations de publication

Date de publication:
May 2022
Historique:
received: 19 10 2021
accepted: 28 01 2022
revised: 24 01 2022
pubmed: 2 4 2022
medline: 4 5 2022
entrez: 1 4 2022
Statut: ppublish

Résumé

Bacterial leaf streak caused by Xanthomonas oryzae pv. oryzicola (Xoc) is one of the most destructive diseases affecting rice production worldwide. In this study, we extracted and purified phenazine substances from the secondary metabolites of Lysobacter antibioticus 13-6. The bacteriostatic mechanism of phenazine substances against Xoc was investigated through physiological response and transcriptomic analysis. Results showed that phenazine substances affects the cell membrane permeability of Xoc, which causes cell swelling and deformation, blockage of flagellum synthesis, and imbalance of intracellular environment. The changes in intracellular environment affect the physiological and metabolic functions of Xoc, which reduces the formation of pathogenic factors and pathogenicity. Through transcriptomic analysis, we found that among differentially expressed genes, the expression of 595 genes was induced significantly (275 up-regulated and 320 down-regulated). In addition, we observed that phenazine substances affects three main functions of Xoc, i.e., transmembrane transporter activity, DNA-mediated transposition, and structural molecular activity. Phenazine substances also inhibits the potassium ion transport system that reduces Xoc resistance and induces the phosphate ion transport system to maintain the stability of the internal environment. Finally, we conclude that phenazine substances could retard cell growth and reduce the pathogenicity of Xoc by affecting cell structure and physiological metabolism. Altogether, our study highlights latest insights into the antibacterial mechanism of phenazine substances against Xoc and provides basic guidance to manage the incidence of bacterial leaf streak of rice.

Identifiants

pubmed: 35362894
doi: 10.1007/s12275-022-1542-0
pii: 10.1007/s12275-022-1542-0
doi:

Substances chimiques

Anti-Bacterial Agents 0
Bacterial Proteins 0
Phenazines 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

496-510

Informations de copyright

© 2022. The Microbiological Society of Korea.

Références

Ahmed, A., Munir, S., He, P., Li, Y., He, P., Yixin, W., and He, Y. 2020. Biocontrol arsenals of bacterial endophyte: an imminent triumph against clubroot disease. Microbiol. Res. 241, 126565.
pubmed: 32829185 doi: 10.1016/j.micres.2020.126565
Ahmed, W., Yang, J., Tan, Y., Munir, S., Liu, Q., Zhang, J., Ji, G. and Zhao, Z. 2022. Ralstonia solanacearum, a deadly pathogen: Revisiting the bacterial wilt biocontrol practices in tobacco and other Solanaceae. Rhizosphere 21, 100479.
doi: 10.1016/j.rhisph.2022.100479
Barman, R., Mondal, T., Sarkar, J., Sikder, A., and Ghosh, S. 2019. Self-assembled polyurethane capsules with selective antimicrobial activity against Gram-negative E. coli. ACS Biomater. Sci. Eng. 6, 654–663.
pubmed: 33463225 doi: 10.1021/acsbiomaterials.9b00932
Bolger, A.M., Lohse, M., and Usadel, B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120.
pubmed: 24695404 pmcid: 4103590
Cai, Q., Zhou, G., Ahmed, W., Cao, Y., Zhao, M., Li, Z., and Zhao, Z. 2021. Study on the relationship between bacterial wilt and rhizospheric microbial diversity of flue-cured tobacco cultivars. Eur. J. Plant Pathol. 160, 265–276.
doi: 10.1007/s10658-021-02237-4
Chen, C.H., Zheng, W., Huang, X., Zhang, D., and Lin, X. 2006. Major QTL conferring resistance to rice bacterial leaf streak. Agric. Sci. China 5, 216–220.
doi: 10.1016/S1671-2927(06)60041-2
Cimmino, A., Evidente, A., Mathieu, V., Andolfi, A., Lefranc, F., Kornienko, A., and Kiss, R. 2012. Phenazines and cancer. Nat. Prod. Rep. 29, 487–501.
pubmed: 22337153 doi: 10.1039/c2np00079b
Conforte, V.P., Malamud, F., Yaryura, P.M., Toum Terrones, L., Torres, P.S., De Pino, V., Chazarreta, C.N., Gudesblat, G.E., Castagnaro, A.P., Marano, M.R., et al. 2019. The histone-like protein HupB influences biofilm formation and virulence in Xanthomonas citri ssp. citri through the regulation of flagellar biosynthesis. Mol. Plant Pathol. 20, 589–598.
pubmed: 30537413 pmcid: 6637892 doi: 10.1111/mpp.12777
Daher, W., Leclercq, L.D., Viljoen, A., Karam, J., Dufrêne, Y.F., Guérardel, Y., and Kremer, L. 2020. O-Methylation of the glycopeptidolipid acyl chain defines surface hydrophobicity of Mycobacterium abscessus and macrophage invasion. ACS Infect. Dis. 6, 2756–2770.
pubmed: 32857488 doi: 10.1021/acsinfecdis.0c00490
Danchik, C. and Casadevall, A. 2020. Role of cell surface hydrophobicity in the pathogenesis of medically-significant fungi. Front. Cell. Infect. Microbiol. 10, 3389.
Estrada-Cano, C., Castro, M.A.A., Muñoz-Castellanos, L., García-Triana, N., and Hernández-Ochoa, L. 2017. Antifungal activity of microcapsulated clove (Eugenia caryophyllata) and Mexican oregano (Lippia berlandieri) essential oils against Fusarium oxysporum. J. Microb. Biochem. Technol 9, 567–571.
doi: 10.4172/1948-5948.1000342
Fan, S., Tian, F., Li, J., Hutchins, W., Chen, H., Yang, F., Yuan, X., Cui, Z., Yang, C.H., and He, C. 2017. Identification of phenolic compounds that suppress the virulence of Xanthomonas oryzae on rice via the type III secretion system. Mol. Plant Pathol. 18, 555–568.
pubmed: 27084974 doi: 10.1111/mpp.12415
Ferreira, G.M. and Spira, B. 2008. The pst operon of enteropathogenic Escherichia coli enhances bacterial adherence to epithelial cells. Microbiology 154, 2025–2036.
pubmed: 18599831 doi: 10.1099/mic.0.2008/016634-0
Gao, Y., Ji, Y., Li, W., Luo, J., Wang, F., Zhang, X., Niu, Z., Zhou, L., and Yan, L. 2021. Endophytic fungi from Dalbergia odorifera T. Chen producing naringenin inhibit the growth of Staphylococcus aureus by interfering with cell membrane, DNA, and protein. J. Med. Food 24, 116–123.
pubmed: 33523769 doi: 10.1089/jmf.2020.4686
Gomes, T.A., Zanette, C.M., and Spier, M.R. 2020. An overview of cell disruption methods for intracellular biomolecules recovery. Prep. Biochem. Biotechnol. 50, 635–654.
pubmed: 32074000 doi: 10.1080/10826068.2020.1728696
Gómez Expósito, R., Postma, J., Raaijmakers, J.M., and De Bruijn, I. 2015. Diversity and activity of Lysobacter species from disease suppressive soils. Front. Microbiol. 6, 1243.
pubmed: 26635735 pmcid: 4644931 doi: 10.3389/fmicb.2015.01243
Harvey, K.L., Jarocki, V.M., Charles, I.G., and Djordjevic, S.P. 2019. The diverse functional roles of elongation factor Tu (EF-Tu) in microbial pathogenesis. Front. Microbiol. 10, 2351.
pubmed: 31708880 pmcid: 6822514 doi: 10.3389/fmicb.2019.02351
Hata, E.M., Sijam, K., Ahmad, Z.A.M., Yusof, M.T., and Azman, N.A. 2015. In vitro antimicrobial assay of actinomycetes in rice against Xanthomonas oryzae pv. oryzicola and as potential plant growth promoter. Braz. Arch. Biol. Technol. 58, 821–832.
doi: 10.1590/S1516-89132015060263
Hifnawy, M.S., Hassan, H.M., Mohammed, R., Fouda, M.M., Sayed, A.M., Hamed, A.A., AbouZid, S.F., Rateb, M.E., Alhadrami, H.A., and Abdelmohsen, U.R. 2020. Induction of antibacterial metabolites by co-cultivation of two red-sea-sponge-associated actinomycetes Micromonospora sp. UR56 and Actinokinespora sp. EG49. Mar. Drugs 18, 243.
doi: 10.3390/md18050243
Huang, H., Sun, L., Bi, K., Zhong, G., and Hu, M. 2016. The effect of phenazine-1-carboxylic acid on the morphological, physiological, and molecular characteristics of Phellinus noxius. Molecules 21, 613.
pmcid: 6273927 doi: 10.3390/molecules21050613
Jiang, J., Guiza Beltran, D., Schacht, A., Wright, S., Zhang, L., and Du, L. 2018. Functional and structural analysis of phenazine Omethyltransferase LaPhzM from Lysobacter antibioticus OH13 and one-pot enzymatic synthesis of the antibiotic Myxin. ACS Chem. Biol. 13, 1003–1012.
pubmed: 29510028 pmcid: 5910208 doi: 10.1021/acschembio.8b00062
Jiang, X., Lv, B., Wang, Y., Shen, Q., and Wang, X. 2017. Bactericidal mechanisms and effector targets of TiO2 and Ag-TiO2 against Staphylococcus aureus. J. Med. Microbiol. 66, 440–446.
pubmed: 28463658 pmcid: 5817198 doi: 10.1099/jmm.0.000457
Jiang, N., Yan, J., Liang, Y., Shi, Y., He, Z., Wu, Y., Zeng, Q., Liu, X., and Peng, J. 2020. Resistance genes and their interactions with bacterial blight/leaf streak pathogens (Xanthomonas oryzae) in rice (Oryza sativa L.)-an updated review. Rice 13, 3.
pubmed: 31915945 pmcid: 6949332 doi: 10.1186/s12284-019-0358-y
Ju, Y., Tian, H., Zhang, R., Zuo, L., Jin, G., Xu, Q., Ding, X., Li, X., and Chu, Z. 2017. Overexpression of OsHSP18. 0-CI enhances resistance to bacterial leaf streak in rice. Rice 10, 12.
pubmed: 28417425 pmcid: 5393982 doi: 10.1186/s12284-017-0153-6
Klopfenstein, D.V., Zhang, L., Pedersen, B.S., Ramírez, F., Vesztrocy, A.W., Naldi, A., Mungall, C.J., Yunes, J.M., Botvinnik, O., Weigel, M., et al. 2018. GOATOOLS: a python library for gene ontology analyses. Sci. Rep. 8, 10872.
pubmed: 30022098 pmcid: 6052049 doi: 10.1038/s41598-018-28948-z
Kudryavtseva, S.S., Pichkur, E.B., Yaroshevich, I.A., Mamchur, A.A., Panina, I.S., Moiseenko, A.V., Sokolova, O.S., Muronetz, V.I., and Stanishneva-Konovalova, T.B. 2021. Novel cryo-EM structure of an ADP-bound GroEL-GroES complex. Sci. Rep. 11, 18241.
pubmed: 34521893 pmcid: 8440773 doi: 10.1038/s41598-021-97657-x
Kühlbrandt, W. 2019. Structure and mechanisms of F-type ATP synthases. Annu. Rev. Biochem. 88, 515–549.
pubmed: 30901262 doi: 10.1146/annurev-biochem-013118-110903
Kurzbaum, E., Iliasafov, L., Kolik, L., Starosvetsky, J., Bilanovic, D., Butnariu, M., and Armon, R. 2019. From the Titanic and other shipwrecks to biofilm prevention: the interesting role of polyphenol-protein complexes in biofilm inhibition. Sci. Total Environ. 658, 1098–1105.
pubmed: 30677974 doi: 10.1016/j.scitotenv.2018.12.197
Laborda, P., Zhao, Y., Ling, J., Hou, R., and Liu, F. 2018. Production of antifungal p-aminobenzoic acid in Lysobacter antibioticus OH13. J. Agric. Food Chem. 66, 630–636.
pubmed: 29283262 doi: 10.1021/acs.jafc.7b05084
Lamarche, M.G., Wanner, B.L., Crépin, S., and Harel, J. 2008. The phosphate regulon and bacterial virulence: a regulatory network connecting phosphate homeostasis and pathogenesis. FEMS Microbiol. Rev. 32, 461–473.
pubmed: 18248418 doi: 10.1111/j.1574-6976.2008.00101.x
Li, K., Wu, G., Liao, Y., Zeng, Q., Wang, H., and Liu, F. 2020. RpoN1 and RpoN2 play different regulatory roles in virulence traits, flagellar biosynthesis, and basal metabolism in Xanthomonas campestris. Mol. Plant Pathol. 21, 907–922.
pubmed: 32281725 pmcid: 7280030 doi: 10.1111/mpp.12938
Liu, X., Wang, C., Yan, B., Lyu, L., Takiff, H.E., and Gao, Q. 2020. The potassium transporter KdpA affects persister formation by regulating ATP levels in Mycobacterium marinum. Emerg. Microbes Infect. 9, 129–139.
doi: 10.1080/22221751.2019.1710090
Liu, Q., Yang, J., Wang, X., Wei, L., and Ji, G. 2021. Effect of culture medium optimization on the secondary metabolites activity of Lysobacter antibioticus 13–6. Prep. Biochem. Biotechnol. 51, 1008–1017.
pubmed: 33656401 doi: 10.1080/10826068.2021.1888298
Merda, D., Briand, M., Bosis, E., Rousseau, C., Portier, P., Barret, M., Jacques, M.A., and Fischer-Le Saux, M. 2017. Ancestral acquisitions, gene flow and multiple evolutionary trajectories of the type three secretion system and effectors in Xanthomonas plant pathogens. Mol. Ecol. 26, 5939–5952.
pubmed: 28869687 pmcid: 7168496 doi: 10.1111/mec.14343
Munir, S., Ahmed, A., Li, Y., He, P., Singh, B.K., He, P., Li, X., Asad, S., Wu, Y., and He, Y. 2021. The hidden treasures of citrus: finding Huanglongbing cure where it was lost. Crit. Rev. Biotechnol. 30, 1–16.
doi: 10.1080/07388551.2021.1942780
Niño-Liu, D.O., Ronald, P.C., and Bogdanove, A.J. 2006. Xanthomonas oryzae pathovars: model pathogens of a model crop. Mol. Plant Pathol. 7, 303–324.
pubmed: 20507449 doi: 10.1111/j.1364-3703.2006.00344.x
O’May, G.A., Jacobsen, S.M., Longwell, M., Stoodley, P., Mobley, H.L.T., and Shirtliff, M.E. 2009. The high-affinity phosphate transporter Pst in Proteus mirabilis HI4320 and its importance in biofilm formation. Microbiology 155, 1523–1535.
pubmed: 19372157 pmcid: 2889415 doi: 10.1099/mic.0.026500-0
Onaga, G., Murori, R., Habarugira, G., Nyongesa, O., Bigirimana, J., Oliva, R., Vera Cruz, C., Onyango, G., Andaku, J., and Ongom, J. 2018. First report of Xanthomonas oryzae pv. oryzicola causing bacterial leaf streak of rice in Kenya. Plant Dis. 102, 1025–1025.
doi: 10.1094/PDIS-06-17-0846-PDN
Pan, J., Hao, X., Yao, H., Ge, K., Ma, L., and Ma, W. 2019. Matrine inhibits mycelia growth of Botryosphaeria dothidea by affecting membrane permeability. J. For. Res. 30, 1105–1113.
doi: 10.1007/s11676-019-00883-3
Pan, X., Xu, S., Wu, J., Duan, Y., Zheng, Z., Wang, J., Song, X., and Zhou, M. 2018a. Ankyrin-like protein AnkB interacts with CatB, affects catalase activity, and enhances resistance of Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola to phenazine-1-carboxylic acid. Appl. Environ. Microbiol. 84, e02145–17.
pubmed: 29180371 pmcid: 5795068 doi: 10.1128/AEM.02145-17
Pan, X., Xu, S., Wu, J., Luo, J., Duan, Y., Wang, J., Zhang, F., and Zhou, M. 2018b. Screening and characterization of Xanthomonas oryzae pv. oryzae strains with resistance to pheazine-1-carboxylic acid. Pestic. Biochem. Physiol. 145, 8–14.
pubmed: 29482735 doi: 10.1016/j.pestbp.2017.12.003
Panthee, S., Hamamoto, H., Paudel, A., and Sekimizu, K. 2016. Lysobacter species: a potential source of novel antibiotics. Arch. Microbiol. 198, 839–845.
pubmed: 27541998 doi: 10.1007/s00203-016-1278-5
Papaianni, M., Ricciardelli, A., Casillo, A., Corsaro, M.M., Borbone, F., Della Ventura, B., Velotta, R., Fulgione, A., Woo, S.L., Tutino, M.L., et al. 2021. The union is strength: the synergic action of long fatty acids and a bacteriophage against Xanthomonas campestris biofilm. Microorganisms 9, 60.
doi: 10.3390/microorganisms9010060
Patra, J.K., Das, G., and Baek, K.H. 2015. Antibacterial mechanism of the action of Enteromorpha linza L. essential oil against Escherichia coli and Salmonella Typhimurium. Bot. Stud. 56, 13.
pubmed: 28510822 pmcid: 5432928 doi: 10.1186/s40529-015-0093-7
Pegos, V.R., Nascimento, J.F., Sobreira, T.J.P., Pauletti, B.A., Paes-Leme, A., and Balan, A. 2014. Phosphate regulated proteins of Xanthomonas citri subsp. citri: a proteomic approach. J. Proteomics 108, 78–88.
pubmed: 24846853 doi: 10.1016/j.jprot.2014.05.005
Qian, G., Zhou, Y., Zhao, Y., Song, Z., Wang, S., Fan, J., Hu, B., Venturi, V., and Liu, F. 2013. Proteomic analysis reveals novel extracellular virulence-associated proteins and functions regulated by the diffusible signal factor (DSF) in Xanthomonas oryzae pv. oryzicola. J. Proteome Res. 12, 3327–3341.
pubmed: 23688240 doi: 10.1021/pr4001543
Sekiya, M., Izumisawa, S., Iwamoto-Kihara, A., Fan, Y., Shimoyama, Y., Sasaki, M., and Nakanishi-Matsui, M. 2019. Proton-pumping F-ATPase plays an important role in Streptococcus mutans under acidic conditions. Arch. Biochem. Biophys. 666, 46–51.
pubmed: 30930283 doi: 10.1016/j.abb.2019.03.014
Shobha, B., Lakshmeesha, T.R., Ansari, M.A., Almatroudi, A., Alzohairy, M.A., Basavaraju, S., Alurappa, R., Niranjana, S.R., and Chowdappa, S. 2020. Mycosynthesis of ZnO nanoparticles using Trichoderma spp. isolated from rhizosphere soils and its synergistic antibacterial effect against Xanthomonas oryzae pv. oryzae. J. Fungi 6, 181.
doi: 10.3390/jof6030181
Stock, C., Hielkema, L., Tascón, I., Wunnicke, D., Oostergetel, G., Azkargorta, M., Paulino, C., and Hänelt, I. 2018. Cryo-EM structures of KdpFABC suggest a K
pubmed: 30478378 pmcid: 6255902 doi: 10.1038/s41467-018-07319-2
Wan, X., Yang, J., Ahmed, W., Liu, Q., Wang, Y., Wei, L., and Ji, G. 2021. Functional analysis of pde gene and its role in the pathogenesis of Xanthomonas oryzae pv. oryzicola. Infect. Genet. Evol. 94, 105008.
doi: 10.1016/j.meegid.2021.105008
Wang, H., Liao, L., Chen, S., and Zhang, L.H. 2020a. A quorum quenching bacterial isolate contains multiple substrate-inducible genes conferring degradation of diffusible signal factor. Appl. Environ. Microbiol. 86, e02930–19.
pubmed: 31980426 pmcid: 7082559
Wang, S., Liu, L., Mi, X., Zhao, S., An, Y., Xia, X., Guo, R., and Wei, C. 2021. Multi-omics analysis to visualize the dynamic roles of defense genes in the response of tea plants to gray blight. Plant J. 106, 862–875.
pubmed: 33595875 doi: 10.1111/tpj.15203
Wang, H., Liu, X., Wu, C., Zhang, M., Ke, Z., Jiang, W., Zhou, Y., Qiu, J., and Hong, Q. 2020b. An angular dioxygenase gene cluster responsible for the initial phenazine-1-carboxylic acid degradation step in Rhodococcus sp. WH99 can protect sensitive organisms from toxicity. Sci. Total Environ. 706, 135726.
pubmed: 31837849 doi: 10.1016/j.scitotenv.2019.135726
Wei, L., Yang, J., Ahmed, W., Xiong, X., Liu, Q., Huang, Q., and Ji, G. 2021. Unraveling the association between metabolic changes in inter-genus and intra-genus bacteria to mitigate clubroot disease of Chinese cabbage. Agronomy 11, 2424.
doi: 10.3390/agronomy11122424
Wu, T., Peng, C., Li, B., Wu, W., Kong, L., Li, F., Chu, Z., Liu, F., and Ding, X. 2019. OsPGIPl-mediated resistance to bacterial leaf streak in rice is beyond responsive to the polygalacturonase of Xanthomonas oryzae pv. oryzicola. Rice 12, 90.
pubmed: 31832906 pmcid: 6908543 doi: 10.1186/s12284-019-0352-4
Xie, X., Chen, Z., Cao, J., Guan, H., Lin, D., Li, C., Lan, T., Duan, Y., Mao, D., and Wu, W. 2014. Toward the positional cloning of qBlsr5a, a QTL underlying resistance to bacterial leaf streak, using overlapping sub-CSSLs in rice. PLoS ONE 9, e95751.
pubmed: 24752581 pmcid: 3994123 doi: 10.1371/journal.pone.0095751
Xie, X., Chen, Z., Zhang, B., Guan, H., Zheng, Y., Lan, T., Zhang, J., Qin, M., and Wu, W. 2020. Transcriptome analysis of xa5-mediated resistance to bacterial leaf streak in rice (Oryza sativa L.). Sci. Rep. 10, 19439.
pubmed: 33173096 pmcid: 7656458 doi: 10.1038/s41598-020-74515-w
Xie, C., Mao, X., Huang, J., Ding, Y., Wu, J., Dong, S., Kong, L., Gao, G., Li, C.Y., and Wei, L. 2011. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 39, W316–W322.
pubmed: 21715386 pmcid: 3125809 doi: 10.1093/nar/gkr483
Xu, M.., Xia, Z., Zhai, W., Xu, J., Zhou, Y., and Li, Z. 2008. Construction of double right-border binary vector carrying non-host gene Rxo1 resistant to bacterial leaf streak of rice. Rice Sci. 15, 243–246.
doi: 10.1016/S1672-6308(08)60048-7
Xue, Y., Hu, M., Chen, S., Hu, A., Li, S., Han, H., Lu, G., Zeng, L., and Zhou, J. 2020. Enterobacter asburiae and Pantoea ananatis causing rice bacterial blight in China. Plant Dis. 105, 2078–2088.
doi: 10.1094/PDIS-10-20-2292-RE
Yang, F., Deng, X., Ma, W., Berletch, J.B., Rabaia, N., Wei, G., Moore, J.M., Filippova, G.N., Xu, J., Liu, Y., et al. 2015. The lncRNA Firre anchors the inactive X chromosome to the nucleolus by binding CTCF and maintains H3K27me3 methylation. Genome Biol. 16, 52.
pubmed: 25887447 pmcid: 4391730 doi: 10.1186/s13059-015-0618-0
Yang, P., Li, F.J., Huang, S.W., Luo, M., Lin, W., Yuan, G.Q., and Li, Q.Q. 2020. Physiological and transcriptional response of Xanthoonas oryzae pv. oryzae to berberine, an emerging chemical control. Phytopathology 110, 1027–1038.
pubmed: 31961254 doi: 10.1094/PHYTO-09-19-0327-R
Yang, F., Qian, S., Tian, F., Chen, H., Hutchins, W., Yang, C.H., and He, C. 2016. The GGDEF-domain protein GdpX1 attenuates motility, exopolysaccharide production and virulence in Xanthomonas oryzae pv. oryzae. J. Appl. Microbiol. 120, 1646–1657.
pubmed: 26929398 doi: 10.1111/jam.13115
Ye, T., Zhou, T., Fan, X., Bhatt, P., Zhang, L., and Chen, S. 2019. Acinetobacter lactucae strain QL-1, a novel quorum quenching candidate against bacterial pathogen Xanthomonas campestris pv. campestris. Front. Microbiol. 10, 2867.
pubmed: 31921047 pmcid: 6929412 doi: 10.3389/fmicb.2019.02867
Yoshida, Y., Sugiyama, S., Oyamada, T., Yokoyama, K., and Makino, K. 2010. Identification and characterization of novel phosphate regulon genes, ecs0540-ecs0544, in Escherichia coli O157: H7. Mol. Genet. Genomics 284, 197–205.
pubmed: 20640580 doi: 10.1007/s00438-010-0559-y
Zhang, L., Tian, X., Kuang, S., Liu, G., Zhang, C., and Sun, C. 2017. Antagonistic activity and mode of action of phenazine-1-carboxylic acid, produced by marine bacterium Pseudomonas aeruginosa PA31x, against Vibrio anguillarum in vitro and in a zebrafish in vivo model. Front. Microbiol. 8, 289.
pubmed: 28289406 pmcid: 5326748
Zhang, Y., Wei, C., Jiang, W., Wang, L., Li, C., Wang, Y., Dow, J.M., and Sun, W. 2013. The HD-GYP domain protein RpfG of Xanthomonas oryzae pv. oryzicola regulates synthesis of extracellular polysaccharides that contribute to biofilm formation and virulence on rice. PLoS ONE 8, e59428.
pubmed: 23544067 pmcid: 3609779 doi: 10.1371/journal.pone.0059428
Zhang, J., Wei, L., Yang, J., Ahmed, W., Wang, Y., Fu, L., and Ji, G. 2020. Probiotic consortia: reshaping the rhizospheric microbiome and its role in suppressing root-rot disease of Panax notoginseng. Front. Microbiol. 11, 701.
pubmed: 32425904 pmcid: 7203884 doi: 10.3389/fmicb.2020.00701
Zhao, Y., Qian, G., Ye, Y., Wright, S., Chen, H., Shen, Y., Liu, F., and Du, L. 2016. Heterocyclic aromatic N-oxidation in the biosynthesis of phenazine antibiotics from Lysobacter antibioticus. Org. Lett. 18, 2495–2498.
pubmed: 27145204 doi: 10.1021/acs.orglett.6b01089
Zou, H.S., Song, X., Zou, L.F., Yuan, L., Li, Y.R., Guo, W., Che, Y.Z., Zhao, W.X., Duan, Y.P., and Chen, G.Y. 2012. EcpA, an extracellular protease, is a specific virulence factor required by Xanthomonas oryzae pv. oryzicola but not by X. oryzae pv. oryzae in rice. Microbiology 158, 2372–2383.
pubmed: 22700650 doi: 10.1099/mic.0.059964-0

Auteurs

Qi Liu (Q)

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, P. R. China.
Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, P. R. China.

Jun Yang (J)

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, P. R. China.
Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, P. R. China.
College of Resources, Environment and Chemistry, Chuxiong Normal University, Chuxiong, 675000, P. R. China.

Waqar Ahmed (W)

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, P. R. China.
Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, P. R. China.

Xiaoyan Wan (X)

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, P. R. China.
Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, P. R. China.

Lanfang Wei (L)

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, P. R. China.
Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, P. R. China.

Guanghai Ji (G)

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, P. R. China. jghai001@163.com.
Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, P. R. China. jghai001@163.com.

Articles similaires

Vancomycin-associated DRESS demonstrates delay in AST abnormalities.

Ahmed Hussein, Kateri L Schoettinger, Jourdan Hydol-Smith et al.
1.00
Humans Drug Hypersensitivity Syndrome Vancomycin Female Male
Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Humans Arthroplasty, Replacement, Elbow Prosthesis-Related Infections Debridement Anti-Bacterial Agents
Genome, Viral Ralstonia Composting Solanum lycopersicum Bacteriophages

Classifications MeSH