Functional redundancy among Polycomb complexes in maintaining the pluripotent state of embryonic stem cells.


Journal

Stem cell reports
ISSN: 2213-6711
Titre abrégé: Stem Cell Reports
Pays: United States
ID NLM: 101611300

Informations de publication

Date de publication:
10 05 2022
Historique:
received: 22 09 2021
revised: 27 02 2022
accepted: 28 02 2022
pubmed: 2 4 2022
medline: 18 5 2022
entrez: 1 4 2022
Statut: ppublish

Résumé

Polycomb group proteins assemble into multi-protein complexes, known as Polycomb repressive complexes 1 and 2 (PRC1 and PRC2), that guide cell fate decisions during embryonic development. PRC1 forms an array of biochemically distinct canonical PRC1 (cPRC1) or non-canonical PRC1 (ncPRC1) complexes characterized by the mutually exclusive presence of PCGF (PCGF1-PCGF6) paralog subunit; however, whether each one of these subcomplexes fulfills a distinct role remains largely controversial. Here, by performing a CRISPR-based loss-of-function screen in embryonic stem cells (ESCs), we uncovered a previously unappreciated functional redundancy among PRC1 subcomplexes. Disruption of ncPRC1, but not cPRC1, displayed severe defects in ESC pluripotency. Remarkably, coablation of non-canonical and canonical PRC1 in ESCs resulted in exacerbation of the phenotype observed in the non-canonical PRC1-null ESCs, highlighting the importance of functional redundancy among PRC1 subcomplexes. Together, our studies demonstrate that PRC1 subcomplexes act redundantly to silence lineage-specific genes and ensure robust maintenance of ESC identity.

Identifiants

pubmed: 35364009
pii: S2213-6711(22)00133-3
doi: 10.1016/j.stemcr.2022.02.020
pmc: PMC9120860
pii:
doi:

Substances chimiques

Drosophila Proteins 0
Polycomb-Group Proteins 0
Polycomb Repressive Complex 2 EC 2.1.1.43
Polycomb Repressive Complex 1 EC 2.3.2.27

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1198-1214

Commentaires et corrections

Type : CommentIn

Informations de copyright

Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.

Références

Mol Cell. 2012 Feb 10;45(3):344-56
pubmed: 22325352
Cell. 2005 Sep 23;122(6):947-56
pubmed: 16153702
Nature. 2001 Aug 9;412(6847):655-60
pubmed: 11493925
Sci Adv. 2021 Jan 20;7(4):
pubmed: 33523934
Nature. 2016 Sep 22;537(7621):508-514
pubmed: 27626380
Development. 2000 Dec;127(23):5093-100
pubmed: 11060235
Nat Rev Mol Cell Biol. 2021 May;22(5):326-345
pubmed: 33723438
Development. 1997 Feb;124(3):721-9
pubmed: 9043087
Sci Rep. 2017 Apr 10;7:46276
pubmed: 28393894
Sci Adv. 2020 Apr 01;6(14):eaax5692
pubmed: 32270030
Science. 2017 Jun 9;356(6342):1081-1084
pubmed: 28596365
Mol Cell. 2019 Jun 6;74(5):1037-1052.e7
pubmed: 31029542
Cell Stem Cell. 2012 Sep 7;11(3):319-32
pubmed: 22770845
Nat Rev Mol Cell Biol. 2009 Oct;10(10):697-708
pubmed: 19738629
Nature. 1981 Jul 9;292(5819):154-6
pubmed: 7242681
J Biol Chem. 2017 Feb 17;292(7):2773-2784
pubmed: 28049731
Cell Rep. 2016 Oct 4;17(2):583-595
pubmed: 27705803
Development. 2001 May;128(9):1587-97
pubmed: 11290297
Proc Natl Acad Sci U S A. 2003 Mar 4;100(5):2468-73
pubmed: 12589020
Cell. 1999 Jul 9;98(1):37-46
pubmed: 10412979
Genes Dev. 2012 May 1;26(9):920-32
pubmed: 22499591
Mol Cell. 2019 Jun 6;74(5):1020-1036.e8
pubmed: 31029541
J Biol Chem. 2020 Jul 10;295(28):9712-9724
pubmed: 32482889
J Clin Invest. 2012 Feb;122(2):612-23
pubmed: 22214847
Cell. 2017 Sep 21;171(1):34-57
pubmed: 28938122
Science. 2017 Mar 10;355(6329):1081-1084
pubmed: 28280206
Proc Natl Acad Sci U S A. 1981 Dec;78(12):7634-8
pubmed: 6950406
Mol Cell Biol. 2005 Aug;25(15):6694-706
pubmed: 16024804
J Biol Chem. 2017 Dec 29;292(52):21527-21537
pubmed: 29054931
Mol Cell Biol. 2005 Aug;25(16):7193-202
pubmed: 16055728
Nature. 2006 May 18;441(7091):349-53
pubmed: 16625203
Development. 2015 Jan 1;142(1):31-40
pubmed: 25516968
Cell Stem Cell. 2015 Sep 3;17(3):300-15
pubmed: 26340528
PLoS Genet. 2018 Jan 30;14(1):e1007193
pubmed: 29381691
Elife. 2017 Mar 17;6:
pubmed: 28304275

Auteurs

Yaru Zhu (Y)

State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, 12 Xuefu Road, Nanjing, Jiangsu 210061, China.

Lixia Dong (L)

State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, 12 Xuefu Road, Nanjing, Jiangsu 210061, China.

Congcong Wang (C)

State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, 12 Xuefu Road, Nanjing, Jiangsu 210061, China.

Kunying Hao (K)

State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, 12 Xuefu Road, Nanjing, Jiangsu 210061, China.

Jingnan Wang (J)

State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, 12 Xuefu Road, Nanjing, Jiangsu 210061, China.

Linchun Zhao (L)

State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, 12 Xuefu Road, Nanjing, Jiangsu 210061, China.

Lijun Xu (L)

State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, 12 Xuefu Road, Nanjing, Jiangsu 210061, China.

Yin Xia (Y)

School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.

Qing Jiang (Q)

Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China.

Jinzhong Qin (J)

State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, 12 Xuefu Road, Nanjing, Jiangsu 210061, China; Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China. Electronic address: qinjz@nju.edu.cn.

Articles similaires

A key role for P2RX5 in brown adipocyte differentiation and energy homeostasis.

Maria Razzoli, Seth McGonigle, Bhavani Shankar Sahu et al.
1.00
Animals Adipocytes, Brown Mice Cell Differentiation Male
Testicular Neoplasms Neoplasms, Germ Cell and Embryonal Humans Cisplatin Jumonji Domain-Containing Histone Demethylases

Identification of CD141

Gabee Park, Dae Yeon Hwang, Do Young Kim et al.
1.00
Humans Mesenchymal Stem Cells Animals Mice Mesenchymal Stem Cell Transplantation
Animals Drosophila melanogaster Male Drosophila Proteins Spermatogenesis

Classifications MeSH