Control theory illustrates the energy efficiency in the dynamic reconfiguration of functional connectivity.
Journal
Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179
Informations de publication
Date de publication:
01 04 2022
01 04 2022
Historique:
received:
07
06
2021
accepted:
22
02
2022
entrez:
2
4
2022
pubmed:
3
4
2022
medline:
6
4
2022
Statut:
epublish
Résumé
The brain's functional connectivity fluctuates over time instead of remaining steady in a stationary mode even during the resting state. This fluctuation establishes the dynamical functional connectivity that transitions in a non-random order between multiple modes. Yet it remains unexplored how the transition facilitates the entire brain network as a dynamical system and what utility this mechanism for dynamic reconfiguration can bring over the widely used graph theoretical measurements. To address these questions, we propose to conduct an energetic analysis of functional brain networks using resting-state fMRI and behavioral measurements from the Human Connectome Project. Through comparing the state transition energy under distinct adjacent matrices, we justify that dynamic functional connectivity leads to 60% less energy cost to support the resting state dynamics than static connectivity when driving the transition through default mode network. Moreover, we demonstrate that combining graph theoretical measurements and our energy-based control measurements as the feature vector can provide complementary prediction power for the behavioral scores (Combination vs. Control: t = 9.41, p = 1.64e-13; Combination vs. Graph: t = 4.92, p = 3.81e-6). Our approach integrates statistical inference and dynamical system inspection towards understanding brain networks.
Identifiants
pubmed: 35365757
doi: 10.1038/s42003-022-03196-0
pii: 10.1038/s42003-022-03196-0
pmc: PMC8975837
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
295Subventions
Organisme : NIMH NIH HHS
ID : R01 MH074457
Pays : United States
Informations de copyright
© 2022. The Author(s).
Références
Hagmann, P. et al. Mapping the structural core of human cerebral cortex. PLoS Biol. 6, e159 (2008).
pubmed: 18597554
pmcid: 2443193
doi: 10.1371/journal.pbio.0060159
Misic, B. et al. Cooperative and competitive spreading dynamics on the human connectome. Neuron 86, 1518–1529 (2015).
pubmed: 26087168
doi: 10.1016/j.neuron.2015.05.035
Deco, G., Tononi, G., Boly, M. & Kringelbach, M. L. Rethinking segregation and integration: contributions of whole-brain modelling. Nat. Rev. Neurosci. 16, 430–439 (2015).
pubmed: 26081790
doi: 10.1038/nrn3963
Breakspear, M. Dynamic models of large-scale brain activity. Nat. Neurosci. 20, 340–352 (2017).
pubmed: 28230845
doi: 10.1038/nn.4497
Dawson, D. A. Critical dynamics and fluctuations for a mean-field model of cooperative behavior. J. Stat. Phys. 31, 29–85 (1983).
doi: 10.1007/BF01010922
Hutchison, R. M. et al. Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage 80, 360–378 (2013).
doi: 10.1016/j.neuroimage.2013.05.079
Damaraju, E. et al. Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia. NeuroImage Clin. 5, 298–308 (2014).
pubmed: 25161896
pmcid: 4141977
doi: 10.1016/j.nicl.2014.07.003
Leonardi, N. & Van De Ville, D. On spurious and real fluctuations of dynamic functional connectivity during rest. Neuroimage 104, 430–436 (2015).
pubmed: 25234118
doi: 10.1016/j.neuroimage.2014.09.007
Hindriks, R. et al. Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI? Neuroimage 127, 242–256 (2016).
pubmed: 26631813
doi: 10.1016/j.neuroimage.2015.11.055
Patanaik, A. et al. Dynamic functional connectivity and its behavioral correlates beyond vigilance. Neuroimage 177, 1–10 (2018).
pubmed: 29704612
doi: 10.1016/j.neuroimage.2018.04.049
Liégeois, R. et al. Resting brain dynamics at different timescales capture distinct aspects of human behavior. Nat. Commun. 10, 1–9 (2019).
doi: 10.1038/s41467-019-10317-7
Fong, A. H. C. et al. Dynamic functional connectivity during task performance and rest predicts individual differences in attention across studies. Neuroimage 188, 14–25 (2019).
pubmed: 30521950
doi: 10.1016/j.neuroimage.2018.11.057
Bullmore, E. & Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009).
pubmed: 19190637
doi: 10.1038/nrn2575
Liu, Y.-Y., Slotine, J.-J. & Barabási, A.-L. Controllability of complex networks. Nature 473, 167–173 (2011).
pubmed: 21562557
doi: 10.1038/nature10011
Pasqualetti, F., Zampieri, S. & Bullo, F. Controllability metrics, limitations and algorithms for complex networks. IEEE Trans. Control Netw. Syst. 1, 40–52 (2014).
doi: 10.1109/TCNS.2014.2310254
Kailath, T. Linear Systems Vol. 1 (Prentice-Hall Englewood Cliffs, 1980).
Wiles, L. et al. Autaptic connections shift network excitability and bursting. Sci. Rep. 7, 44006 (2017).
pubmed: 28266594
pmcid: 5339801
doi: 10.1038/srep44006
Yan, G. et al. Network control principles predict neuron function in the Caenorhabditis elegans connectome. Nature 550, 519–523 (2017).
pubmed: 29045391
pmcid: 5710776
doi: 10.1038/nature24056
Kim, J. Z. et al. Role of graph architecture in controlling dynamical networks with applications to neural systems. Nat. Phys. 14, 91–98 (2018).
Gu, S. et al. Controllability of structural brain networks. Nat. Commun. 6, 8414 (2015).
pubmed: 26423222
doi: 10.1038/ncomms9414
Cornblath, E. J. et al. Temporal sequences of brain activity at rest are constrained by white matter structure and modulated by cognitive demands. Commun. Biol. 3, 261 (2020).
pubmed: 32444827
pmcid: 7244753
doi: 10.1038/s42003-020-0961-x
Gu, S. et al. Optimal trajectories of brain state transitions. Neuroimage 148, 305–317 (2017).
pubmed: 28088484
doi: 10.1016/j.neuroimage.2017.01.003
Betzel, R. F., Gu, S., Medaglia, J. D., Pasqualetti, F. & Bassett, D. S. Optimally controlling the human connectome: the role of network topology. Sci. Rep. 6, 30770 (2016).
pubmed: 27468904
pmcid: 4965758
doi: 10.1038/srep30770
Tang, E. et al. Developmental increases in white matter network controllability support a growing diversity of brain dynamics. Nat. Commun. 8, 1252 (2017).
pubmed: 29093441
pmcid: 5665937
doi: 10.1038/s41467-017-01254-4
Lee, W. H., Rodrigue, A., Glahn, D. C., Bassett, D. S. & Frangou, S. Heritability and cognitive relevance of structural brain controllability. Cereb Cortex 30, 3044–3054 (2020).
Jeganathan, J. et al. Fronto-limbic dysconnectivity leads to impaired brain network controllability in young people with bipolar disorder and those at high genetic risk. Neuroimage Clin. 19, 71–81 (2018).
pubmed: 30035004
pmcid: 6051310
doi: 10.1016/j.nicl.2018.03.032
Bernhardt, B. C. et al. Temporal lobe epilepsy: Hippocampal pathology modulates connectome topology and controllability. Neurology 92, e2209–e2220 (2019).
pubmed: 31004070
pmcid: 6537128
doi: 10.1212/WNL.0000000000007447
Taylor, P. N. et al. Optimal control based seizure abatement using patient derived connectivity. Front Neurosci. 9, 202 (2015).
pubmed: 26089775
pmcid: 4453481
doi: 10.3389/fnins.2015.00202
Muldoon, S. F. et al. Stimulation-based control of dynamic brain networks. PLoS Comput. Biol. 12, e1005076 (2016).
Medaglia, J. D. et al. Network controllability in the inferior frontal gyrus relates to controlled language variability and susceptibility to TMS. J. Neurosci. 38, 6399–6410 (2018).
pubmed: 29884739
pmcid: 6041793
doi: 10.1523/JNEUROSCI.0092-17.2018
Stiso, J. et al. White matter network architecture guides direct electrical stimulation through optimal state transitions. Cell Rep. 28, 2554–2566.e7 (2019).
pubmed: 31484068
pmcid: 6849479
doi: 10.1016/j.celrep.2019.08.008
Khambhati, A. N. et al. Functional control of electrophysiological network architecture using direct neurostimulation in humans. Netw. Neurosci. 3, 848–877 (2019).
pubmed: 31410383
pmcid: 6663306
doi: 10.1162/netn_a_00089
Palmigiano, A., Geisel, T., Wolf, F. & Battaglia, D. Flexible information routing by transient synchrony. Nat. Neurosci. 20, 1014–1022 (2017).
pubmed: 28530664
doi: 10.1038/nn.4569
Shah, P. et al. Characterizing the role of the structural connectome in seizure dynamics. Brain. 142, 1955–1972 (2019)
pubmed: 31099821
pmcid: 6598625
doi: 10.1093/brain/awz125
Honey, C. J. et al. Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl Acad. Sci. USA 106, 2035–2040 (2009).
pubmed: 19188601
pmcid: 2634800
doi: 10.1073/pnas.0811168106
Friston, K. J., Li, B., Daunizeau, J. & Stephan, K. E. Network discovery with {DCM}. Neuroimage 56, 1202–1221 (2011).
pubmed: 21182971
doi: 10.1016/j.neuroimage.2010.12.039
McIntosh, A. R. Tracing the route to path analysis in neuroimaging. Neuroimage 62, 887–890 (2012).
pubmed: 21988890
doi: 10.1016/j.neuroimage.2011.09.068
Liégeois, R., Laumann, T. O., Snyder, A. Z., Zhou, J. & Yeo, B. T. T. Interpreting temporal fluctuations in resting-state functional connectivity MRI. NeuroImage 163, 437–455 (2017).
pubmed: 28916180
doi: 10.1016/j.neuroimage.2017.09.012
Barnett, L., Barrett, A. B. & Seth, A. K. Granger causality and transfer entropy are equivalent for Gaussian variables. Phys. Rev. Lett. 103, 238701 (2009).
pubmed: 20366183
doi: 10.1103/PhysRevLett.103.238701
Van Essen, D. C. et al. The WU-Minn Human Connectome Project: an overview. Neuroimage 80, 62–79 (2013).
pubmed: 23684880
doi: 10.1016/j.neuroimage.2013.05.041
Glasser, M. F. et al. The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 80, 105–124 (2013).
pubmed: 23668970
doi: 10.1016/j.neuroimage.2013.04.127
Smith, S. M. et al. Resting-state fMRI in the human connectome project. Neuroimage 80, 144–168 (2013).
pubmed: 23702415
doi: 10.1016/j.neuroimage.2013.05.039
Schaefer, A. et al. Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb. Cortex 28, 3095–3114 (2018).
pubmed: 28981612
doi: 10.1093/cercor/bhx179
Fischl, B. FreeSurfer. Neuroimage 62, 774–781 (2012).
pubmed: 22248573
doi: 10.1016/j.neuroimage.2012.01.021
Gitelman, D. R., Penny, W. D., Ashburner, J. & Friston, K. J. Modeling regional and psychophysiologic interactions in fMRI: the importance of hemodynamic deconvolution. Neuroimage 19, 200–207 (2003).
pubmed: 12781739
doi: 10.1016/S1053-8119(03)00058-2
Demirtaş, M. et al. Dynamic functional connectivity reveals altered variability in functional connectivity among patients with major depressive disorder. Hum. Brain Mapp. 37, 2918–2930 (2016).
pubmed: 27120982
pmcid: 5074271
doi: 10.1002/hbm.23215
Bassett, D. S., Nelson, B. G., Mueller, B. A., Camchong, J. & Lim, K. O. Altered resting state complexity in schizophrenia. Neuroimage 59, 2196–2207 (2012).
pubmed: 22008374
doi: 10.1016/j.neuroimage.2011.10.002
Kandel, E. R. et al. Principles of neural science Vol. 4 (McGraw-hill New York, 2000).
Li, A., Cornelius, S. P., Liu, Y.-Y., Wang, L. & Barabási, A.-L. The fundamental advantages of temporal networks. Science 358, 1042–1046 (2017).
pubmed: 29170233
doi: 10.1126/science.aai7488
An, S., Liu, W. & Venkatesh, S. Face recognition using kernel ridge regression. in 2007 IEEE Conference on Computer Vision and Pattern Recognition 1–7 (2007).
Gray, J. R., Chabris, C. F. & Braver, T. S. Neural mechanisms of general fluid intelligence. Nat. Neurosci. 6, 316–322 (2003).
pubmed: 12592404
doi: 10.1038/nn1014
Kane, M. J. & Engle, R. W. The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: an individual-differences perspective. Psychon. Bull. Rev. 9, 637–671 (2002).
pubmed: 12613671
doi: 10.3758/BF03196323
Leber, A. B., Turk-Browne, N. B. & Chun, M. M. Neural predictors of moment-to-moment fluctuations in cognitive flexibility. Proc. Natl Acad. Sci. USA 105, 13592–13597 (2008).
pubmed: 18757744
pmcid: 2527350
doi: 10.1073/pnas.0805423105
Baum, G. L. et al. Development of structure-function coupling in human brain networks during youth. Proc. Natl Acad. Sci. USA 117, 771–778 (2020).
pubmed: 31874926
doi: 10.1073/pnas.1912034117
Deco, G. et al. Resting-state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations. J. Neurosci. 33, 11239–11252 (2013).
pubmed: 23825427
pmcid: 3718368
doi: 10.1523/JNEUROSCI.1091-13.2013
Friston, K. J. Functional and effective connectivity: a review. Brain Connect 1, 13–36 (2011).
pubmed: 22432952
doi: 10.1089/brain.2011.0008
Scheid, B. H. et al. Time-evolving controllability of effective connectivity networks during seizure progression. Proc. Natl Acad. Sci. USA 118, e2006436118 (2021).
Bassett, D. S. et al. Dynamic reconfiguration of human brain networks during learning. Proc. Natl Acad. Sci. USA 108, 7641–7646 (2011).
pubmed: 21502525
pmcid: 3088578
doi: 10.1073/pnas.1018985108
Zhang, J. et al. Neural, electrophysiological and anatomical basis of brain- network variability and its characteristic changes in mental disorders. Brain 139, 2307–2321 (2016).
pubmed: 27421791
doi: 10.1093/brain/aww143
Braun, U. et al. Dynamic reconfiguration of frontal brain networks during executive cognition in humans. Proc. Natl Acad. Sci. USA 112, 11678–11683 (2015).
pubmed: 26324898
pmcid: 4577153
doi: 10.1073/pnas.1422487112
Finn, E. S. et al. Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity. Nat. Neurosci. 18, 1664–1671 (2015).
pubmed: 26457551
pmcid: 5008686
doi: 10.1038/nn.4135
Shen, X. et al. Using connectome-based predictive modeling to predict individual behavior from brain connectivity. Nat. Protoc. 12, 506–518 (2017).
pubmed: 28182017
pmcid: 5526681
doi: 10.1038/nprot.2016.178
Cornblath, E. J. et al. Sex differences in network controllability as a predictor of executive function in youth. Neuroimage 188, 122–134 (2019).
pubmed: 30508681
doi: 10.1016/j.neuroimage.2018.11.048
Cui, Z. et al. Optimization of energy state transition trajectory supports the development of executive function during youth. Elife 9, e53060 (2020).
pubmed: 32216874
pmcid: 7162657
doi: 10.7554/eLife.53060
Sui, J., Liu, M. X., Lee, J. H., Zhang, J. & Calhoun, V. Deep learning methods and applications in neuroimaging. J. Neurosci. Methods 339, (2020).
Kalman, R. E., Falb, P. L. & Arbib, M. A. Topics in Mathematical System Theory Vol. 1 (McGraw-Hill New York, 1969).
Deco, G., Jirsa, V. K. & McIntosh, A. R. Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat. Rev. Neurosci. 12, 43–56 (2011).
Liu, J. et al. Intrinsic brain hub connectivity underlies individual differences in spatial working memory. Cereb. Cortex 27, 5496–5508 (2017).
pubmed: 28334075
Franzmeier, N. et al. Left frontal hub connectivity delays cognitive impairment in autosomal-dominant and sporadic Alzheimer’s disease. Brain 141, 1186–1200 (2018).
pubmed: 29462334
pmcid: 5888938
doi: 10.1093/brain/awy008
Fransson, P. Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum. Brain Mapp. 26, 15–29 (2005).
pubmed: 15852468
pmcid: 6871700
doi: 10.1002/hbm.20113
Keilholz, S. D., Caballero-Gaudes, C., Bandettini, P., Deco, G. & Calhoun, V. D. Time-resolved resting state fMRI analysis: current status, challenges, and new directions. Brain Connect. https://doi.org/10.1089/brain.2017.0543 (2017).
Sitaram, R. et al. Closed-loop brain training: the science of neurofeedback. Nat. Rev. Neurosci. 18, 86 (2017).
pubmed: 28003656
doi: 10.1038/nrn.2016.164
Robinson, E. C. et al. MSM: a new flexible framework for multimodal surface matching. Neuroimage 100, 414–426 (2014).
doi: 10.1016/j.neuroimage.2014.05.069
Robinson, E. C. et al. Multimodal surface matching: fast and generalisable cortical registration using discrete optimisation. in International Conference on Information Processing in Medical Imaging 475–486 (2013).
Salimi-Khorshidi, G. et al. Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers. Neuroimage 90, 449–468 (2014).
pubmed: 24389422
doi: 10.1016/j.neuroimage.2013.11.046
Griffanti, L. et al. ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging. Neuroimage 95, 232–247 (2014).
pubmed: 24657355
doi: 10.1016/j.neuroimage.2014.03.034
Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17, 825–841 (2002).
pubmed: 12377157
doi: 10.1006/nimg.2002.1132
Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L. & Petersen, S. E. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59, 2142–2154 (2012).
pubmed: 22019881
doi: 10.1016/j.neuroimage.2011.10.018
Li, J. et al. Global signal regression strengthens association between resting-state functional connectivity and behavior. Neuroimage 196, 126–141 (2019).
pubmed: 30974241
doi: 10.1016/j.neuroimage.2019.04.016
Tang, E. & Bassett, D. S. Colloquium: Control of dynamics in brain networks. Rev. Mod. Phys. 90, 031003 (2018).
doi: 10.1103/RevModPhys.90.031003
Duan, G., Li, A., Meng, T., Zhang, G. & Wang, L. Energy cost for controlling complex networks with linear dynamics. Phys. Rev. E, 99, 052305 (2019).
pubmed: 31212457
doi: 10.1103/PhysRevE.99.052305
Box, J. F. Guinness, Gosset, Fisher, and small samples. Stat. Sci. 2, 45–52 (1987).
Lawley, D. N. A generalization of Fisher’s z test. Biometrika 30, 180–187 (1938).
doi: 10.1093/biomet/30.1-2.180
Welch, B. L. On the z-test in randomized blocks and Latin squares. Biometrika 29, 21–52 (1937).
doi: 10.1093/biomet/29.1-2.21
Allen, E. A. et al. Tracking whole-brain connectivity dynamics in the resting state. Cereb. Cortex 24, 663–676 (2014).
pubmed: 23146964
doi: 10.1093/cercor/bhs352
Thomas Yeo, B. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).
pmcid: 3174820
doi: 10.1152/jn.00338.2011