Nanotechnology-aided advancement in the combating of cancer metastasis.
Cancer
Metastasis
Nanoparticles
Nanotechnology
Translation
Journal
Cancer metastasis reviews
ISSN: 1573-7233
Titre abrégé: Cancer Metastasis Rev
Pays: Netherlands
ID NLM: 8605731
Informations de publication
Date de publication:
06 2022
06 2022
Historique:
received:
16
12
2021
accepted:
09
03
2022
pubmed:
3
4
2022
medline:
12
8
2022
entrez:
2
4
2022
Statut:
ppublish
Résumé
Cancer, especially when it has metastasized to different locations in the body, is notoriously difficult to treat. Metastatic cancer accounts for most cancer deaths and thus remains an enormous challenge. During the metastasis process, cancer cells negotiate a series of steps termed the "metastatic cascadeˮ that offer potential for developing anti-metastatic therapy strategies. Currently available conventional treatment and diagnostic methods addressing metastasis come with their own pitfalls and roadblocks. In this contribution, we comprehensively discuss the potential improvements that nanotechnology-aided approaches are able to bring, either alone or in combination with the existing conventional techniques, to the identification and treatment of metastatic disease. We tie specific nanotechnology-aided strategies to the complex biology of the different steps of the metastatic cascade in order to open up new avenues for fine-tuned targeting and development of anti-metastatic agents designed specifically to prevent or mitigate the metastatic outgrowth of cancer. We also present a viewpoint on the progress of translation of nanotechnology into cancer metastasis patient care.
Identifiants
pubmed: 35366154
doi: 10.1007/s10555-022-10025-7
pii: 10.1007/s10555-022-10025-7
pmc: PMC8975728
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
383-404Informations de copyright
© 2022. This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply.
Références
Caswell, D. R., & Swanton, C. (2017). The role of tumour heterogeneity and clonal cooperativity in metastasis, immune evasion and clinical outcome. BMC Medicine, 15(1), 133.
pubmed: 28716075
pmcid: 5514532
doi: 10.1186/s12916-017-0900-y
Lüönd, F., Tiede, S., & Christofori, G. (2021). Breast cancer as an example of tumour heterogeneity and tumour cell plasticity during malignant progression. British Journal of Cancer, 125(2), 164–175.
pubmed: 33824479
pmcid: 8292450
doi: 10.1038/s41416-021-01328-7
Saxena, M., Christofori G. (2013). Rebuilding cancer metastasis in the mouse. Molecular Oncology, 7.
van Zijl, F., Krupitza, G., & Mikulits, W. (2011). Initial steps of metastasis: Cell invasion and endothelial transmigration. Mutation Research, 728(1–2), 23–34.
pubmed: 21605699
pmcid: 4028085
doi: 10.1016/j.mrrev.2011.05.002
Seyfried, T. N., & Huysentruyt, L. C. (2013). On the origin of cancer metastasis. Critical Reviews in Oncogenesis, 18(1–2), 43–73.
pubmed: 23237552
pmcid: 3597235
doi: 10.1615/CritRevOncog.v18.i1-2.40
Anderson, R. L., et al. (2019). A framework for the development of effective anti-metastatic agents. Nature Reviews Clinical Oncology, 16(3), 185–204.
pubmed: 30514977
doi: 10.1038/s41571-018-0134-8
Fontebasso, Y., & Dubinett, S. M. (2015). Drug Development for Metastasis Prevention. Critical Reviews in Oncogenesis, 20(5–6), 449–473.
pubmed: 27279241
pmcid: 6497172
doi: 10.1615/CritRevOncog.v20.i5-6.150
Jayne, D. G. (2003). The molecular biology of peritoneal carcinomatosis from gastrointestinal cancer. Ann Acad Med Singap, 32(2), 219–225.
pubmed: 12772526
Langley, R. R., & Fidler, I. J. (2011). The seed and soil hypothesis revisited–the role of tumor-stroma interactions in metastasis to different organs. International Journal of Cancer, 128(11), 2527–2535.
pubmed: 21365651
pmcid: 3075088
doi: 10.1002/ijc.26031
Mollica, H., et al. (2019). Two-Channel Compartmentalized Microfluidic Chip for Real-Time Monitoring of the Metastatic Cascade. ACS Biomaterials Science & Engineering, 5(9), 4834–4843.
doi: 10.1021/acsbiomaterials.9b00697
Redig, A. J., & McAllister, S. S. (2013). Breast cancer as a systemic disease: A view of metastasis. Journal of Internal Medicine, 274(2), 113–126.
pubmed: 23844915
pmcid: 3711134
doi: 10.1111/joim.12084
Neben, K., et al. (2008). Metastases in the Absence of a Primary Tumor: Advances in the Diagnosis and Treatment of CUP Syndrome. Deutsches Ärzteblatt International, 105(43), 733–740.
pubmed: 19623297
pmcid: 2696976
Visentin, S., et al. (2020). Targeting Tumour Metastasis: The Emerging Role of Nanotechnology. Current Medicinal Chemistry, 27(8), 1367–1381.
pubmed: 30569844
doi: 10.2174/0929867326666181220095343
Park, G. T., & Choi, K. C. (2016). Advanced new strategies for metastatic cancer treatment by therapeutic stem cells and oncolytic virotherapy. Oncotarget, 7(36), 58684–58695.
pubmed: 27494901
pmcid: 5295462
doi: 10.18632/oncotarget.11017
Wu, Q., et al. (2014). Multi-drug resistance in cancer chemotherapeutics: Mechanisms and lab approaches. Cancer Letters, 347(2), 159–166.
pubmed: 24657660
doi: 10.1016/j.canlet.2014.03.013
Perez-Herrero, E., & Fernandez-Medarde, A. (2015). Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. European Journal of Pharmaceutics and Biopharmaceutics, 93, 52–79.
pubmed: 25813885
doi: 10.1016/j.ejpb.2015.03.018
Ali, E. S., et al. (2021). Targeting cancer cells with nanotherapeutics and nanodiagnostics: Current status and future perspectives. Seminars in Cancer Biology, 69, 52–68.
pubmed: 32014609
doi: 10.1016/j.semcancer.2020.01.011
Peer, D., et al. (2007). Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2(12), 751–760.
pubmed: 18654426
doi: 10.1038/nnano.2007.387
Mocan, T., et al. (2017). Carbon nanotubes as anti-bacterial agents. Cellular and Molecular Life Sciences, 74(19), 3467–3479.
pubmed: 28536787
doi: 10.1007/s00018-017-2532-y
Mocan, T., et al. (2015). In Vitro Administration of Gold Nanoparticles Functionalized with MUC-1 Protein Fragment Generates Anticancer Vaccine Response via Macrophage Activation and Polarization Mechanism. Journal of Cancer, 6(6), 583–592.
pubmed: 26000051
pmcid: 4439945
doi: 10.7150/jca.11567
Li, Y., et al. (2018). Nanoparticle-Mediated Therapeutic Agent Delivery for Treating Metastatic Breast Cancer-Challenges and Opportunities. Nanomaterials (Basel), 8(6).
van der Meel, R., Lammers, T., & Hennink, W. E. (2017). Cancer nanomedicines: Oversold or underappreciated? Expert Opinion on Drug Delivery, 14(1), 1–5.
pubmed: 27852113
doi: 10.1080/17425247.2017.1262346
van der Meel, R., et al. (2019). Smart cancer nanomedicine. Nature Nanotechnology, 14(11), 1007–1017.
pubmed: 31695150
pmcid: 7227032
doi: 10.1038/s41565-019-0567-y
Lungu, II, et al. (2019). Nanobiomaterials Used in Cancer Therapy: An Up-To-Date Overview. Molecules, 24(19).
BioparmaPEG. Current Nanomedicines for the Treatment of Cancer. 2021; Available from: https://www.biochempeg.com/article/188.html .
Stover, T., & Kester, M. (2003). Liposomal delivery enhances short-chain ceramide-induced apoptosis of breast cancer cells. Journal of Pharmacology and Experimental Therapeutics, 307(2), 468–475.
pubmed: 12975495
doi: 10.1124/jpet.103.054056
Choi, S. J., & Choy, J. H. (2011). Layered double hydroxide nanoparticles as target-specific delivery carriers: Uptake mechanism and toxicity. Nanomedicine (London, England), 6(5), 803–814.
doi: 10.2217/nnm.11.86
Harrison, E. B., et al. (2020). A Circle RNA Regulatory Axis Promotes Lung Squamous Metastasis via CDR1-Mediated Regulation of Golgi Trafficking. Cancer Research, 80(22), 4972–4985.
pubmed: 32978168
pmcid: 7669576
doi: 10.1158/0008-5472.CAN-20-1162
Xu, M., et al. (2021). Systemic metastasis-targeted nanotherapeutic reinforces tumor surgical resection and chemotherapy. Nature Communications, 12(1), 3187.
pubmed: 34045459
pmcid: 8160269
doi: 10.1038/s41467-021-23466-5
Kaluzova, M., et al. (2015). Targeted therapy of glioblastoma stem-like cells and tumor non-stem cells using cetuximab-conjugated iron-oxide nanoparticles. Oncotarget, 6(11), 8788–8806.
pubmed: 25871395
pmcid: 4496184
doi: 10.18632/oncotarget.3554
Liu, R., et al. (2019). Theranostic nanoparticles with tumor-specific enzyme-triggered size reduction and drug release to perform photothermal therapy for breast cancer treatment. Acta Pharm Sin B, 9(2), 410–420.
pubmed: 30976492
doi: 10.1016/j.apsb.2018.09.001
Luo, Z., Dai, Y., & Gao, H. (2019). Development and application of hyaluronic acid in tumor targeting drug delivery. Acta Pharm Sin B, 9(6), 1099–1112.
pubmed: 31867159
pmcid: 6900560
doi: 10.1016/j.apsb.2019.06.004
Liu, R., et al. (2018). Theranostic size-reducible and no donor conjugated gold nanocluster fabricated hyaluronic acid nanoparticle with optimal size for combinational treatment of breast cancer and lung metastasis. Journal of Controlled Release, 278, 127–139.
pubmed: 29630985
doi: 10.1016/j.jconrel.2018.04.005
Qin, L., & Gao, H. (2019). The application of nitric oxide delivery in nanoparticle-based tumor targeting drug delivery and treatment. Asian Journal of Pharmaceutical Sciences, 14(4), 380–390.
pubmed: 32104467
doi: 10.1016/j.ajps.2018.10.005
Zhang, W., et al. (2020). The progress and perspective of nanoparticle-enabled tumor metastasis treatment. Acta Pharmaceutica Sinica B, 10(11), 2037–2053.
pubmed: 33304778
pmcid: 7714986
doi: 10.1016/j.apsb.2020.07.013
Hu, C., et al. (2018). Coadministration of iRGD with Multistage Responsive Nanoparticles Enhanced Tumor Targeting and Penetration Abilities for Breast Cancer Therapy. ACS Applied Materials & Interfaces, 10(26), 22571–22579.
doi: 10.1021/acsami.8b04847
Tran, M. A., et al. (2008). Combining nanoliposomal ceramide with sorafenib synergistically inhibits melanoma and breast cancer cell survival to decrease tumor development. Clinical Cancer Research, 14(11), 3571–3581.
pubmed: 18519791
doi: 10.1158/1078-0432.CCR-07-4881
Chen, J., et al. (2014). Effective inhibition of colon cancer cell growth with MgAl-layered double hydroxide (LDH) loaded 5-FU and PI3K/mTOR dual inhibitor BEZ-235 through apoptotic pathways. International Journal of Nanomedicine, 9, 3403–3411.
pubmed: 25075187
pmcid: 4107171
Guan, X. (2015). Cancer metastases: Challenges and opportunities. Acta Pharm Sin B, 5(5), 402–418.
pubmed: 26579471
pmcid: 4629446
doi: 10.1016/j.apsb.2015.07.005
Del Bufalo, D., et al. (2006). Antiangiogenic potential of the Mammalian target of rapamycin inhibitor temsirolimus. Cancer Research, 66(11), 5549–5554.
pubmed: 16740688
doi: 10.1158/0008-5472.CAN-05-2825
Yu, H., et al. (2020). Tumor regression and potentiation of polymeric vascular disrupting therapy through reprogramming of a hypoxia microenvironment with temsirolimus. Biomater Sci, 8(1), 325–332.
pubmed: 31714543
doi: 10.1039/C9BM01398A
Clarke, M. F., et al. (2006). Cancer stem cells–perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Research, 66(19), 9339–9344.
pubmed: 16990346
doi: 10.1158/0008-5472.CAN-06-3126
Dreesen, O., & Brivanlou, A. H. (2007). Signaling pathways in cancer and embryonic stem cells. Stem Cell Rev, 3(1), 7–17.
pubmed: 17873377
doi: 10.1007/s12015-007-0004-8
Li, F., et al. (2007). Beyond tumorigenesis: Cancer stem cells in metastasis. Cell Research, 17(1), 3–14.
pubmed: 17179981
doi: 10.1038/sj.cr.7310118
Baumann, M., Krause, M., & Hill, R. (2008). Exploring the role of cancer stem cells in radioresistance. Nature Reviews Cancer, 8(7), 545–554.
pubmed: 18511937
doi: 10.1038/nrc2419
Reda, A., Hosseiny, S., & El-Sherbiny, I. M. (2019). Next-generation nanotheranostics targeting cancer stem cells. Nanomedicine, 14(18), 2487–2514.
pubmed: 31490100
doi: 10.2217/nnm-2018-0443
Zuo, Z. Q., et al. (2016). Promoting tumor penetration of nanoparticles for cancer stem cell therapy by TGF-beta signaling pathway inhibition. Biomaterials, 82, 48–59.
pubmed: 26751819
doi: 10.1016/j.biomaterials.2015.12.014
Liu, D., et al. (2020). Targeted destruction of cancer stem cells using multifunctional magnetic nanoparticles that enable combined hyperthermia and chemotherapy. Theranostics, 10(3), 1181–1196.
pubmed: 31938059
pmcid: 6956796
doi: 10.7150/thno.38989
Wang, M., et al. (2016). Eradication of CD44-variant positive population in head and neck tumors through controlled intracellular navigation of cisplatin-loaded nanomedicines. Journal of Controlled Release, 230, 26–33.
pubmed: 27040816
doi: 10.1016/j.jconrel.2016.03.038
Shen, S., et al. (2021). A nanotherapeutic strategy to overcome chemotherapeutic resistance of cancer stem-like cells. Nature Nanotechnology, 16(1), 104–113.
pubmed: 33437035
doi: 10.1038/s41565-020-00793-0
Lang, T., et al. (2019). Cocktail Strategy Based on Spatio-Temporally Controlled Nano Device Improves Therapy of Breast Cancer. Adv Mater, 31(5), e1806202.
Mahira, S., et al. (2019). Cabazitaxel and silibinin co-encapsulated cationic liposomes for CD44 targeted delivery: A new insight into nanomedicine based combinational chemotherapy for prostate cancer. Biomedicine & Pharmacotherapy, 110, 803–817.
doi: 10.1016/j.biopha.2018.11.145
Kaushik, N. K., et al. (2016). Low doses of PEG-coated gold nanoparticles sensitize solid tumors to cold plasma by blocking the PI3K/AKT-driven signaling axis to suppress cellular transformation by inhibiting growth and EMT. Biomaterials, 87, 118–130.
pubmed: 26921841
doi: 10.1016/j.biomaterials.2016.02.014
Liu, Y., et al. (2015). Gd-metallofullerenol nanomaterial as non-toxic breast cancer stem cell-specific inhibitor. Nature Communications, 6(1), 5988.
pubmed: 25612916
doi: 10.1038/ncomms6988
Petersburg, J. R., et al. (2018). Eradication of Established Tumors by Chemically Self-Assembled Nanoring Labeled T Cells. ACS Nano, 12(7), 6563–6576.
pubmed: 29792808
pmcid: 6506352
doi: 10.1021/acsnano.8b01308
Kang, T.-W., et al. (2015). Mica Nanoparticle, STB-HO Eliminates the Human Breast Carcinoma Cells by Regulating the Interaction of Tumor with its Immune Microenvironment. Scientific Reports, 5(1), 17515.
pubmed: 26631982
pmcid: 4668362
doi: 10.1038/srep17515
Yazdi, M. H., et al. (2012). The preventive oral supplementation of a selenium nanoparticle-enriched probiotic increases the immune response and lifespan of 4T1 breast cancer bearing mice. Arzneimittel-Forschung, 62(11), 525–531.
pubmed: 22945771
Rao, L., et al. (2020). Activating Macrophage-Mediated Cancer Immunotherapy by Genetically Edited Nanoparticles. Advanced Materials, 32(47), 2004853.
doi: 10.1002/adma.202004853
Liu, X., et al., Co-localized delivery of nanomedicine and nanovaccine augments the postoperative cancer immunotherapy by amplifying T-cell responses. Biomaterials, 2020. 230: p. 119649.
Yang, X., et al. (2019). Tumor Microenvironment-Responsive Dual Drug Dimer-Loaded PEGylated Bilirubin Nanoparticles for Improved Drug Delivery and Enhanced Immune-Chemotherapy of Breast Cancer. Advanced Functional Materials, 29(32), 1901896.
doi: 10.1002/adfm.201901896
Kuai, R., et al., Elimination of established tumors with nanodisc-based combination chemoimmunotherapy. Science Advances, 2018. 4(4): p. eaao1736.
Lu, J., et al. (2018). Breast Cancer Chemo-immunotherapy through Liposomal Delivery of an Immunogenic Cell Death Stimulus Plus Interference in the IDO-1 Pathway. ACS Nano, 12(11), 11041–11061.
pubmed: 30481959
pmcid: 6262474
doi: 10.1021/acsnano.8b05189
Li, T. F., et al. (2019). Doxorubicin-polyglycerol-nanodiamond composites stimulate glioblastoma cell immunogenicity through activation of autophagy. Acta Biomaterialia, 86, 381–394.
pubmed: 30654213
doi: 10.1016/j.actbio.2019.01.020
Chen, Q., et al. (2016). Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nature Communications, 7(1), 13193.
pubmed: 27767031
pmcid: 5078754
doi: 10.1038/ncomms13193
Lu, Q., et al. (2019). Photothermally activatable PDA immune nanomedicine combined with PD-L1 checkpoint blockade for antimetastatic cancer photoimmunotherapy. Journal of Materials Chemistry B, 7(15), 2499–2511.
pubmed: 32255127
doi: 10.1039/C9TB00089E
Sun, W., et al., Synergistic triple-combination therapy with hyaluronic acid-shelled PPy/CPT nanoparticles results in tumor regression and prevents tumor recurrence and metastasis in 4T1 breast cancer. Biomaterials, 2019. 217: p. 119264.
Yu, W., et al., Sequentially responsive biomimetic nanoparticles with optimal size in combination with checkpoint blockade for cascade synergetic treatment of breast cancer and lung metastasis. Biomaterials, 2019. 217: p. 119309.
Liu, R., et al. (2020). Macrophage-mimic shape changeable nanomedicine retained in tumor for multimodal therapy of breast cancer. Journal of Controlled Release, 321, 589–601.
pubmed: 32114091
doi: 10.1016/j.jconrel.2020.02.043
Liu, R., et al. (2019). Linear Chimeric Triblock Molecules Self-Assembled Micelles with Controllably Transformable Property to Enhance Tumor Retention for Chemo-Photodynamic Therapy of Breast Cancer. Advanced Functional Materials, 29(23), 1808462.
doi: 10.1002/adfm.201808462
Gao, F., et al., Hypoxia-tropic nanozymes as oxygen generators for tumor-favoring theranostics. Biomaterials, 2020. 230: p. 119635.
Liu, D., et al. (2019). Redox-Activated Porphyrin-Based Liposome Remote-Loaded with Indoleamine 2,3-Dioxygenase (IDO) Inhibitor for Synergistic Photoimmunotherapy through Induction of Immunogenic Cell Death and Blockage of IDO Pathway. Nano Letters, 19(10), 6964–6976.
pubmed: 31518149
doi: 10.1021/acs.nanolett.9b02306
Nayak, A., et al. (2019). Nanoquinacrine sensitizes 5-FU-resistant cervical cancer stem-like cells by down-regulating Nectin-4 via ADAM-17 mediated NOTCH deregulation. Cellular Oncology (Dordrecht), 42(2), 157–171.
doi: 10.1007/s13402-018-0417-1
Guo, R., et al. (2019). Development of a Non-Coding-RNA-based EMT/CSC Inhibitory Nanomedicine for In Vivo Treatment and Monitoring of HCC. Advanced Science, 6(9), 1801885.
pubmed: 31065520
pmcid: 6498119
doi: 10.1002/advs.201801885
Luo, L., et al. (2020). Stimuli-responsive polymeric prodrug-based nanomedicine delivering nifuroxazide and doxorubicin against primary breast cancer and pulmonary metastasis. Journal of Controlled Release, 318, 124–135.
pubmed: 31838206
doi: 10.1016/j.jconrel.2019.12.017
Ding, F., et al. (2020). Enhancing the chemotherapeutic efficacy of platinum prodrug nanoparticles and inhibiting cancer metastasis by targeting iron homeostasis. Nanoscale Horiz, 5(6), 999–1015.
pubmed: 32364553
doi: 10.1039/D0NH00148A
Liu, J., et al. (2019). Enhanced Primary Tumor Penetration Facilitates Nanoparticle Draining into Lymph Nodes after Systemic Injection for Tumor Metastasis Inhibition. ACS Nano, 13(8), 8648–8658.
pubmed: 31328920
doi: 10.1021/acsnano.9b03472
Cheng, J., et al., Nanotechnology-Assisted Isolation and Analysis of Circulating Tumor Cells on Microfluidic Devices. Micromachines (Basel), 2020. 11(8).
Izadi, S., et al. (2020). Codelivery of HIF-1alpha siRNA and Dinaciclib by Carboxylated Graphene Oxide-Trimethyl Chitosan-Hyaluronate Nanoparticles Significantly Suppresses Cancer Cell Progression. Pharmaceutical Research, 37(10), 196.
pubmed: 32944844
doi: 10.1007/s11095-020-02892-y
Ye, H., et al. (2019). Bioinspired nanoplatelets for chemo-photothermal therapy of breast cancer metastasis inhibition. Biomaterials, 206, 1–12.
pubmed: 30921730
doi: 10.1016/j.biomaterials.2019.03.024
Morad, S. A., et al. (2016). Short-chain ceramides depress integrin cell surface expression and function in colorectal cancer cells. Cancer Letters, 376(2), 199–204.
pubmed: 27045476
doi: 10.1016/j.canlet.2016.03.049
Krishnamurthy, K., et al. (2008). Deoxycholate promotes survival of breast cancer cells by reducing the level of pro-apoptotic ceramide. Breast Cancer Research, 10(6), R106.
pubmed: 19087284
pmcid: 2656903
doi: 10.1186/bcr2211
Zhu, Y., et al. (2015). Enhanced Anti-Metastatic Activity of Etoposide Using Layered Double Hydroxide Nano Particles. Journal of Biomedical Nanotechnology, 11(12), 2158–2168.
pubmed: 26510310
doi: 10.1166/jbn.2015.2164
Luo, G., et al. (2010). LyP-1-conjugated nanoparticles for targeting drug delivery to lymphatic metastatic tumors. International Journal of Pharmaceutics, 385(1–2), 150–156.
pubmed: 19825404
doi: 10.1016/j.ijpharm.2009.10.014
Zhao, L., et al. (2020). Exosome-mediated siRNA delivery to suppress postoperative breast cancer metastasis. Journal of Controlled Release, 318, 1–15.
pubmed: 31830541
doi: 10.1016/j.jconrel.2019.12.005
Peiris, P. M., et al. (2015). Vascular Targeting of a Gold Nanoparticle to Breast Cancer Metastasis. Journal of Pharmaceutical Sciences, 104(8), 2600–2610.
pubmed: 26036431
doi: 10.1002/jps.24518
Sun, W., et al. (2019). Bone-Targeted Nanoplatform Combining Zoledronate and Photothermal Therapy To Treat Breast Cancer Bone Metastasis. ACS Nano, 13(7), 7556–7567.
pubmed: 31259530
doi: 10.1021/acsnano.9b00097
Bai, S. B., et al. (2020). Bone-targeted PAMAM nanoparticle to treat bone metastases of lung cancer. Nanomedicine (London, England), 15(9), 833–849.
doi: 10.2217/nnm-2020-0024
Chen, S.-H., et al. (2020). Alendronate/folic acid-decorated polymeric nanoparticles for hierarchically targetable chemotherapy against bone metastatic breast cancer. Journal of Materials Chemistry B, 8(17), 3789–3800.
pubmed: 32150202
doi: 10.1039/D0TB00046A
Kraljevic, S. and K. Pavelic, Navigare necessere est. Improved navigation would help to solve two crucial problems in modern drug therapy: toxicity and precise delivery. EMBO Rep, 2005. 6(8): p. 695–700.
Zhou, Y., et al. (2020). Targeted Delivery of Secretory Promelittin via Novel Poly(lactone-co-β-amino ester) Nanoparticles for Treatment of Breast Cancer Brain Metastases. Advanced Science, 7(5), 1901866.
pubmed: 32154067
pmcid: 7055583
doi: 10.1002/advs.201901866
Juthani, R., et al. (2020). Ultrasmall Core-Shell Silica Nanoparticles for Precision Drug Delivery in a High-Grade Malignant Brain Tumor Model. Clinical Cancer Research, 26(1), 147–158.
pubmed: 31515460
doi: 10.1158/1078-0432.CCR-19-1834
Huo, D., et al. (2019). Eradication of unresectable liver metastasis through induction of tumour specific energy depletion. Nature Communications, 10(1), 3051.
pubmed: 31296864
pmcid: 6624273
doi: 10.1038/s41467-019-11082-3
Wang, Z., et al. (2021). Metastasis-associated fibroblasts: An emerging target for metastatic cancer. Biomark Res, 9(1), 47.
pubmed: 34112258
pmcid: 8194104
doi: 10.1186/s40364-021-00305-9
Kaps, L. and D. Schuppan, Targeting Cancer Associated Fibroblasts in Liver Fibrosis and Liver Cancer Using Nanocarriers. Cells, 2020. 9(9).
Li, Y. J., et al. (2020). Emerging nanomedicine-based strategies for preventing metastasis of pancreatic cancer. Journal of Controlled Release, 320, 105–111.
pubmed: 31978441
doi: 10.1016/j.jconrel.2020.01.041
Yin, F., et al., Reduction-responsive polypeptide nanomedicines significantly inhibit progression of orthotopic osteosarcoma. Nanomedicine, 2020. 23: p. 102085.
Kievit, F. M., et al. (2012). Targeting of primary breast cancers and metastases in a transgenic mouse model using rationally designed multifunctional SPIONs. ACS Nano, 6(3), 2591–2601.
pubmed: 22324543
pmcid: 3397248
doi: 10.1021/nn205070h
Li, J., et al. (2014). A multifunctional polymeric nanotheranostic system delivers doxorubicin and imaging agents across the blood-brain barrier targeting brain metastases of breast cancer. ACS Nano, 8(10), 9925–9940.
pubmed: 25307677
doi: 10.1021/nn501069c
Patil, R., et al. (2015). MRI virtual biopsy and treatment of brain metastatic tumors with targeted nanobioconjugates: Nanoclinic in the brain. ACS Nano, 9(5), 5594–5608.
pubmed: 25906400
pmcid: 4768903
doi: 10.1021/acsnano.5b01872
Sundstrom, T., et al. (2013). Automated tracking of nanoparticle-labeled melanoma cells improves the predictive power of a brain metastasis model. Cancer Research, 73(8), 2445–2456.
pubmed: 23423977
doi: 10.1158/0008-5472.CAN-12-3514
Weinstein, J. S., et al. (2010). Superparamagnetic iron oxide nanoparticles: Diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. Journal of Cerebral Blood Flow and Metabolism, 30(1), 15–35.
pubmed: 19756021
doi: 10.1038/jcbfm.2009.192
Peiris, P. M., et al. (2012). Imaging metastasis using an integrin-targeting chain-shaped nanoparticle. ACS Nano, 6(10), 8783–8795.
pubmed: 23005348
pmcid: 3487383
doi: 10.1021/nn303833p
Li, K., Nejadnik, H., & Daldrup-Link, H. E. (2017). Next-generation superparamagnetic iron oxide nanoparticles for cancer theranostics. Drug Discovery Today, 22(9), 1421–1429.
pubmed: 28454771
pmcid: 5610947
doi: 10.1016/j.drudis.2017.04.008
Rajkumar, V., et al. (2015). Texture analysis of (125)I-A5B7 anti-CEA antibody SPECT differentiates metastatic colorectal cancer model phenotypes and anti-vascular therapy response. British Journal of Cancer, 112(12), 1882–1887.
pubmed: 25989271
pmcid: 4580400
doi: 10.1038/bjc.2015.166
Chen, F., et al., Molecular phenotyping and image-guided surgical treatment of melanoma using spectrally distinct ultrasmall core-shell silica nanoparticles. Sci Adv, 2019. 5(12): p. eaax5208.
Diocou, S., et al. (2017). [(18)F]tetrafluoroborate-PET/CT enables sensitive tumor and metastasis in vivo imaging in a sodium iodide symporter-expressing tumor model. Science and Reports, 7(1), 946.
doi: 10.1038/s41598-017-01044-4
Liu, T. W., et al. (2013). Inherently multimodal nanoparticle-driven tracking and real-time delineation of orthotopic prostate tumors and micrometastases. ACS Nano, 7(5), 4221–4232.
pubmed: 23544841
pmcid: 3667620
doi: 10.1021/nn400669r
Parchur, A. K., et al. (2018). Vascular Interventional Radiology-Guided Photothermal Therapy of Colorectal Cancer Liver Metastasis with Theranostic Gold Nanorods. ACS Nano, 12(7), 6597–6611.
pubmed: 29969226
pmcid: 9272590
doi: 10.1021/acsnano.8b01424
Chen, Q., et al. (2014). An albumin-based theranostic nano-agent for dual-modal imaging guided photothermal therapy to inhibit lymphatic metastasis of cancer post surgery. Biomaterials, 35(34), 9355–9362.
pubmed: 25132606
doi: 10.1016/j.biomaterials.2014.07.062
Huo, D., et al. (2014). X-ray CT guided fault-free photothermal ablation of metastatic lymph nodes with ultrafine HER-2 targeting W18O49 nanoparticles. Biomaterials, 35(33), 9155–9166.
pubmed: 25112934
doi: 10.1016/j.biomaterials.2014.07.034
Hoffman, R. M. (2015). Application of GFP imaging in cancer. Laboratory Investigation, 95(4), 432–452.
pubmed: 25686095
doi: 10.1038/labinvest.2014.154
Timpson, P., McGhee, E. J., & Anderson, K. I. (2011). Imaging molecular dynamics in vivo–from cell biology to animal models. Journal of Cell Science, 124(Pt 17), 2877–2890.
pubmed: 21878495
doi: 10.1242/jcs.085191
Naczynski, D. J., et al. (2013). Rare-earth-doped biological composites as in vivo shortwave infrared reporters. Nature Communications, 4, 2199.
pubmed: 23873342
doi: 10.1038/ncomms3199
Kantamneni, H., et al. (2017). Surveillance nanotechnology for multi-organ cancer metastases. Nat Biomed Eng, 1, 993–1003.
pubmed: 29531851
pmcid: 5844578
doi: 10.1038/s41551-017-0167-9
Naczynski, D. J., et al. (2010). Albumin nanoshell encapsulation of near-infrared-excitable rare-Earth nanoparticles enhances biocompatibility and enables targeted cell imaging. Small (Weinheim an der Bergstrasse, Germany), 6(15), 1631–1640.
doi: 10.1002/smll.200902403
Cui, M., et al. (2013). Multifunctional albumin nanoparticles as combination drug carriers for intra-tumoral chemotherapy. Adv Healthc Mater, 2(9), 1236–1245.
pubmed: 23495216
pmcid: 5720860
doi: 10.1002/adhm.201200467
Bennett, Z. T., et al. (2020). Detection of Lymph Node Metastases by Ultra-pH-Sensitive Polymeric Nanoparticles. Theranostics, 10(7), 3340–3350.
pubmed: 32194872
pmcid: 7053196
doi: 10.7150/thno.41239
Zheng, X., et al. (2015). Tracking Cancer Metastasis In Vivo by Using an Iridium-Based Hypoxia-Activated Optical Oxygen Nanosensor. Angewandte Chemie (International ed. in English), 54(28), 8094–8099.
doi: 10.1002/anie.201503067
Molaabasi, F., et al. (2020). Fluorescent Nanoclusters for Imaging of Cells/Stem Cells. Methods in Molecular Biology, 2125, 27–37.
pubmed: 31872332
doi: 10.1007/7651_2019_273
Doolittle, E., et al. (2015). Spatiotemporal Targeting of a Dual-Ligand Nanoparticle to Cancer Metastasis. ACS Nano, 9(8), 8012–8021.
pubmed: 26203676
pmcid: 4579532
doi: 10.1021/acsnano.5b01552
Verry, C., et al., Targeting brain metastases with ultrasmall theranostic nanoparticles, a first-in-human trial from an MRI perspective. Sci Adv, 2020. 6(29): p. eaay5279.
Venditto, V. J., & Szoka, F. C., Jr. (2013). Cancer nanomedicines: So many papers and so few drugs! Advanced Drug Delivery Reviews, 65(1), 80–88.
pubmed: 23036224
doi: 10.1016/j.addr.2012.09.038
Park, K. (2019). The beginning of the end of the nanomedicine hype. Journal of Controlled Release, 305, 221–222.
pubmed: 31170465
doi: 10.1016/j.jconrel.2019.05.044
Anselmo, A. C., & Mitragotri, S. (2016). Nanoparticles in the clinic. Bioeng Transl Med, 1(1), 10–29.
pubmed: 29313004
pmcid: 5689513
doi: 10.1002/btm2.10003
D’Mello, S. R., et al. (2017). The evolving landscape of drug products containing nanomaterials in the United States. Nature Nanotechnology, 12(6), 523–529.
pubmed: 28436961
doi: 10.1038/nnano.2017.67
Gradishar, W. J., et al. (2005). Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. Journal of Clinical Oncology, 23(31), 7794–7803.
pubmed: 16172456
doi: 10.1200/JCO.2005.04.937
Gabizon, A., et al. (1994). Clinical studies of liposome-encapsulated doxorubicin. Acta Oncologica, 33(7), 779–786.
pubmed: 7993646
doi: 10.3109/02841869409083948
Nanobiotix, Nanobiotix Announces First Ever Radioenhancer to Receive European Market Approval. 2019.
Biospace. MagForce Nanotechnologies Receives European Regulatory Approval for Its Nano-Cancer(R) Therapy. 2010; Available from: https://www.biospace.com/article/releases/magforce-nanotechnologies-receives-european-regulatory-approval-for-its-nano-cancer-r-therapy-/?s=74 .
de Lazaro, I., & Mooney, D. J. (2021). Obstacles and opportunities in a forward vision for cancer nanomedicine. Nature Materials, 20(11), 1469–1479.
pubmed: 34226688
doi: 10.1038/s41563-021-01047-7
Kemp, J. A., & Kwon, Y. J. (2021). Cancer nanotechnology: Current status and perspectives. Nano Converg, 8(1), 34.
pubmed: 34727233
pmcid: 8560887
doi: 10.1186/s40580-021-00282-7
Ventola, C. L. (2017). Progress in Nanomedicine: Approved and Investigational Nanodrugs. P T, 42(12), 742–755.
pubmed: 29234213
pmcid: 5720487
Russell, L.M., C.H. Liu, and P. Grodzinski, Nanomaterials innovation as an enabler for effective cancer interventions. Biomaterials, 2020. 242: p. 119926.
Pharmaceuticals, A., Alnylam Receives Approval of ONPATTRO™ (patisiran) in Europe. 2018.
Grodzinski, P., et al. (2019). Integrating Nanotechnology into Cancer Care. ACS Nano, 13(7), 7370–7376.
pubmed: 31240914
doi: 10.1021/acsnano.9b04266
Hare, J. I., et al. (2017). Challenges and strategies in anti-cancer nanomedicine development: An industry perspective. Advanced Drug Delivery Reviews, 108, 25–38.
pubmed: 27137110
doi: 10.1016/j.addr.2016.04.025
Hartshorn, C. M., et al. (2018). Nanotechnology Strategies To Advance Outcomes in Clinical Cancer Care. ACS Nano, 12(1), 24–43.
pubmed: 29257865
doi: 10.1021/acsnano.7b05108
Schoenmaker, L., et al., mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability. Int J Pharm, 2021. 601: p. 120586.
Saxena, M., & Christofori, G. (2013). Rebuilding cancer metastasis in the mouse. Molecular Oncology, 7(2), 283–296.
pubmed: 23474222
pmcid: 5528417
doi: 10.1016/j.molonc.2013.02.009