Nanotechnology-aided advancement in the combating of cancer metastasis.


Journal

Cancer metastasis reviews
ISSN: 1573-7233
Titre abrégé: Cancer Metastasis Rev
Pays: Netherlands
ID NLM: 8605731

Informations de publication

Date de publication:
06 2022
Historique:
received: 16 12 2021
accepted: 09 03 2022
pubmed: 3 4 2022
medline: 12 8 2022
entrez: 2 4 2022
Statut: ppublish

Résumé

Cancer, especially when it has metastasized to different locations in the body, is notoriously difficult to treat. Metastatic cancer accounts for most cancer deaths and thus remains an enormous challenge. During the metastasis process, cancer cells negotiate a series of steps termed the "metastatic cascadeˮ that offer potential for developing anti-metastatic therapy strategies. Currently available conventional treatment and diagnostic methods addressing metastasis come with their own pitfalls and roadblocks. In this contribution, we comprehensively discuss the potential improvements that nanotechnology-aided approaches are able to bring, either alone or in combination with the existing conventional techniques, to the identification and treatment of metastatic disease. We tie specific nanotechnology-aided strategies to the complex biology of the different steps of the metastatic cascade in order to open up new avenues for fine-tuned targeting and development of anti-metastatic agents designed specifically to prevent or mitigate the metastatic outgrowth of cancer. We also present a viewpoint on the progress of translation of nanotechnology into cancer metastasis patient care.

Identifiants

pubmed: 35366154
doi: 10.1007/s10555-022-10025-7
pii: 10.1007/s10555-022-10025-7
pmc: PMC8975728
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

383-404

Informations de copyright

© 2022. This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply.

Références

Caswell, D. R., & Swanton, C. (2017). The role of tumour heterogeneity and clonal cooperativity in metastasis, immune evasion and clinical outcome. BMC Medicine, 15(1), 133.
pubmed: 28716075 pmcid: 5514532 doi: 10.1186/s12916-017-0900-y
Lüönd, F., Tiede, S., & Christofori, G. (2021). Breast cancer as an example of tumour heterogeneity and tumour cell plasticity during malignant progression. British Journal of Cancer, 125(2), 164–175.
pubmed: 33824479 pmcid: 8292450 doi: 10.1038/s41416-021-01328-7
Saxena, M., Christofori G. (2013). Rebuilding cancer metastasis in the mouse. Molecular Oncology, 7.
van Zijl, F., Krupitza, G., & Mikulits, W. (2011). Initial steps of metastasis: Cell invasion and endothelial transmigration. Mutation Research, 728(1–2), 23–34.
pubmed: 21605699 pmcid: 4028085 doi: 10.1016/j.mrrev.2011.05.002
Seyfried, T. N., & Huysentruyt, L. C. (2013). On the origin of cancer metastasis. Critical Reviews in Oncogenesis, 18(1–2), 43–73.
pubmed: 23237552 pmcid: 3597235 doi: 10.1615/CritRevOncog.v18.i1-2.40
Anderson, R. L., et al. (2019). A framework for the development of effective anti-metastatic agents. Nature Reviews Clinical Oncology, 16(3), 185–204.
pubmed: 30514977 doi: 10.1038/s41571-018-0134-8
Fontebasso, Y., & Dubinett, S. M. (2015). Drug Development for Metastasis Prevention. Critical Reviews in Oncogenesis, 20(5–6), 449–473.
pubmed: 27279241 pmcid: 6497172 doi: 10.1615/CritRevOncog.v20.i5-6.150
Jayne, D. G. (2003). The molecular biology of peritoneal carcinomatosis from gastrointestinal cancer. Ann Acad Med Singap, 32(2), 219–225.
pubmed: 12772526
Langley, R. R., & Fidler, I. J. (2011). The seed and soil hypothesis revisited–the role of tumor-stroma interactions in metastasis to different organs. International Journal of Cancer, 128(11), 2527–2535.
pubmed: 21365651 pmcid: 3075088 doi: 10.1002/ijc.26031
Mollica, H., et al. (2019). Two-Channel Compartmentalized Microfluidic Chip for Real-Time Monitoring of the Metastatic Cascade. ACS Biomaterials Science & Engineering, 5(9), 4834–4843.
doi: 10.1021/acsbiomaterials.9b00697
Redig, A. J., & McAllister, S. S. (2013). Breast cancer as a systemic disease: A view of metastasis. Journal of Internal Medicine, 274(2), 113–126.
pubmed: 23844915 pmcid: 3711134 doi: 10.1111/joim.12084
Neben, K., et al. (2008). Metastases in the Absence of a Primary Tumor: Advances in the Diagnosis and Treatment of CUP Syndrome. Deutsches Ärzteblatt International, 105(43), 733–740.
pubmed: 19623297 pmcid: 2696976
Visentin, S., et al. (2020). Targeting Tumour Metastasis: The Emerging Role of Nanotechnology. Current Medicinal Chemistry, 27(8), 1367–1381.
pubmed: 30569844 doi: 10.2174/0929867326666181220095343
Park, G. T., & Choi, K. C. (2016). Advanced new strategies for metastatic cancer treatment by therapeutic stem cells and oncolytic virotherapy. Oncotarget, 7(36), 58684–58695.
pubmed: 27494901 pmcid: 5295462 doi: 10.18632/oncotarget.11017
Wu, Q., et al. (2014). Multi-drug resistance in cancer chemotherapeutics: Mechanisms and lab approaches. Cancer Letters, 347(2), 159–166.
pubmed: 24657660 doi: 10.1016/j.canlet.2014.03.013
Perez-Herrero, E., & Fernandez-Medarde, A. (2015). Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. European Journal of Pharmaceutics and Biopharmaceutics, 93, 52–79.
pubmed: 25813885 doi: 10.1016/j.ejpb.2015.03.018
Ali, E. S., et al. (2021). Targeting cancer cells with nanotherapeutics and nanodiagnostics: Current status and future perspectives. Seminars in Cancer Biology, 69, 52–68.
pubmed: 32014609 doi: 10.1016/j.semcancer.2020.01.011
Peer, D., et al. (2007). Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2(12), 751–760.
pubmed: 18654426 doi: 10.1038/nnano.2007.387
Mocan, T., et al. (2017). Carbon nanotubes as anti-bacterial agents. Cellular and Molecular Life Sciences, 74(19), 3467–3479.
pubmed: 28536787 doi: 10.1007/s00018-017-2532-y
Mocan, T., et al. (2015). In Vitro Administration of Gold Nanoparticles Functionalized with MUC-1 Protein Fragment Generates Anticancer Vaccine Response via Macrophage Activation and Polarization Mechanism. Journal of Cancer, 6(6), 583–592.
pubmed: 26000051 pmcid: 4439945 doi: 10.7150/jca.11567
Li, Y., et al. (2018). Nanoparticle-Mediated Therapeutic Agent Delivery for Treating Metastatic Breast Cancer-Challenges and Opportunities. Nanomaterials (Basel), 8(6).
van der Meel, R., Lammers, T., & Hennink, W. E. (2017). Cancer nanomedicines: Oversold or underappreciated? Expert Opinion on Drug Delivery, 14(1), 1–5.
pubmed: 27852113 doi: 10.1080/17425247.2017.1262346
van der Meel, R., et al. (2019). Smart cancer nanomedicine. Nature Nanotechnology, 14(11), 1007–1017.
pubmed: 31695150 pmcid: 7227032 doi: 10.1038/s41565-019-0567-y
Lungu, II, et al. (2019). Nanobiomaterials Used in Cancer Therapy: An Up-To-Date Overview. Molecules, 24(19).
BioparmaPEG. Current Nanomedicines for the Treatment of Cancer. 2021; Available from: https://www.biochempeg.com/article/188.html .
Stover, T., & Kester, M. (2003). Liposomal delivery enhances short-chain ceramide-induced apoptosis of breast cancer cells. Journal of Pharmacology and Experimental Therapeutics, 307(2), 468–475.
pubmed: 12975495 doi: 10.1124/jpet.103.054056
Choi, S. J., & Choy, J. H. (2011). Layered double hydroxide nanoparticles as target-specific delivery carriers: Uptake mechanism and toxicity. Nanomedicine (London, England), 6(5), 803–814.
doi: 10.2217/nnm.11.86
Harrison, E. B., et al. (2020). A Circle RNA Regulatory Axis Promotes Lung Squamous Metastasis via CDR1-Mediated Regulation of Golgi Trafficking. Cancer Research, 80(22), 4972–4985.
pubmed: 32978168 pmcid: 7669576 doi: 10.1158/0008-5472.CAN-20-1162
Xu, M., et al. (2021). Systemic metastasis-targeted nanotherapeutic reinforces tumor surgical resection and chemotherapy. Nature Communications, 12(1), 3187.
pubmed: 34045459 pmcid: 8160269 doi: 10.1038/s41467-021-23466-5
Kaluzova, M., et al. (2015). Targeted therapy of glioblastoma stem-like cells and tumor non-stem cells using cetuximab-conjugated iron-oxide nanoparticles. Oncotarget, 6(11), 8788–8806.
pubmed: 25871395 pmcid: 4496184 doi: 10.18632/oncotarget.3554
Liu, R., et al. (2019). Theranostic nanoparticles with tumor-specific enzyme-triggered size reduction and drug release to perform photothermal therapy for breast cancer treatment. Acta Pharm Sin B, 9(2), 410–420.
pubmed: 30976492 doi: 10.1016/j.apsb.2018.09.001
Luo, Z., Dai, Y., & Gao, H. (2019). Development and application of hyaluronic acid in tumor targeting drug delivery. Acta Pharm Sin B, 9(6), 1099–1112.
pubmed: 31867159 pmcid: 6900560 doi: 10.1016/j.apsb.2019.06.004
Liu, R., et al. (2018). Theranostic size-reducible and no donor conjugated gold nanocluster fabricated hyaluronic acid nanoparticle with optimal size for combinational treatment of breast cancer and lung metastasis. Journal of Controlled Release, 278, 127–139.
pubmed: 29630985 doi: 10.1016/j.jconrel.2018.04.005
Qin, L., & Gao, H. (2019). The application of nitric oxide delivery in nanoparticle-based tumor targeting drug delivery and treatment. Asian Journal of Pharmaceutical Sciences, 14(4), 380–390.
pubmed: 32104467 doi: 10.1016/j.ajps.2018.10.005
Zhang, W., et al. (2020). The progress and perspective of nanoparticle-enabled tumor metastasis treatment. Acta Pharmaceutica Sinica B, 10(11), 2037–2053.
pubmed: 33304778 pmcid: 7714986 doi: 10.1016/j.apsb.2020.07.013
Hu, C., et al. (2018). Coadministration of iRGD with Multistage Responsive Nanoparticles Enhanced Tumor Targeting and Penetration Abilities for Breast Cancer Therapy. ACS Applied Materials & Interfaces, 10(26), 22571–22579.
doi: 10.1021/acsami.8b04847
Tran, M. A., et al. (2008). Combining nanoliposomal ceramide with sorafenib synergistically inhibits melanoma and breast cancer cell survival to decrease tumor development. Clinical Cancer Research, 14(11), 3571–3581.
pubmed: 18519791 doi: 10.1158/1078-0432.CCR-07-4881
Chen, J., et al. (2014). Effective inhibition of colon cancer cell growth with MgAl-layered double hydroxide (LDH) loaded 5-FU and PI3K/mTOR dual inhibitor BEZ-235 through apoptotic pathways. International Journal of Nanomedicine, 9, 3403–3411.
pubmed: 25075187 pmcid: 4107171
Guan, X. (2015). Cancer metastases: Challenges and opportunities. Acta Pharm Sin B, 5(5), 402–418.
pubmed: 26579471 pmcid: 4629446 doi: 10.1016/j.apsb.2015.07.005
Del Bufalo, D., et al. (2006). Antiangiogenic potential of the Mammalian target of rapamycin inhibitor temsirolimus. Cancer Research, 66(11), 5549–5554.
pubmed: 16740688 doi: 10.1158/0008-5472.CAN-05-2825
Yu, H., et al. (2020). Tumor regression and potentiation of polymeric vascular disrupting therapy through reprogramming of a hypoxia microenvironment with temsirolimus. Biomater Sci, 8(1), 325–332.
pubmed: 31714543 doi: 10.1039/C9BM01398A
Clarke, M. F., et al. (2006). Cancer stem cells–perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Research, 66(19), 9339–9344.
pubmed: 16990346 doi: 10.1158/0008-5472.CAN-06-3126
Dreesen, O., & Brivanlou, A. H. (2007). Signaling pathways in cancer and embryonic stem cells. Stem Cell Rev, 3(1), 7–17.
pubmed: 17873377 doi: 10.1007/s12015-007-0004-8
Li, F., et al. (2007). Beyond tumorigenesis: Cancer stem cells in metastasis. Cell Research, 17(1), 3–14.
pubmed: 17179981 doi: 10.1038/sj.cr.7310118
Baumann, M., Krause, M., & Hill, R. (2008). Exploring the role of cancer stem cells in radioresistance. Nature Reviews Cancer, 8(7), 545–554.
pubmed: 18511937 doi: 10.1038/nrc2419
Reda, A., Hosseiny, S., & El-Sherbiny, I. M. (2019). Next-generation nanotheranostics targeting cancer stem cells. Nanomedicine, 14(18), 2487–2514.
pubmed: 31490100 doi: 10.2217/nnm-2018-0443
Zuo, Z. Q., et al. (2016). Promoting tumor penetration of nanoparticles for cancer stem cell therapy by TGF-beta signaling pathway inhibition. Biomaterials, 82, 48–59.
pubmed: 26751819 doi: 10.1016/j.biomaterials.2015.12.014
Liu, D., et al. (2020). Targeted destruction of cancer stem cells using multifunctional magnetic nanoparticles that enable combined hyperthermia and chemotherapy. Theranostics, 10(3), 1181–1196.
pubmed: 31938059 pmcid: 6956796 doi: 10.7150/thno.38989
Wang, M., et al. (2016). Eradication of CD44-variant positive population in head and neck tumors through controlled intracellular navigation of cisplatin-loaded nanomedicines. Journal of Controlled Release, 230, 26–33.
pubmed: 27040816 doi: 10.1016/j.jconrel.2016.03.038
Shen, S., et al. (2021). A nanotherapeutic strategy to overcome chemotherapeutic resistance of cancer stem-like cells. Nature Nanotechnology, 16(1), 104–113.
pubmed: 33437035 doi: 10.1038/s41565-020-00793-0
Lang, T., et al. (2019). Cocktail Strategy Based on Spatio-Temporally Controlled Nano Device Improves Therapy of Breast Cancer. Adv Mater, 31(5), e1806202.
Mahira, S., et al. (2019). Cabazitaxel and silibinin co-encapsulated cationic liposomes for CD44 targeted delivery: A new insight into nanomedicine based combinational chemotherapy for prostate cancer. Biomedicine & Pharmacotherapy, 110, 803–817.
doi: 10.1016/j.biopha.2018.11.145
Kaushik, N. K., et al. (2016). Low doses of PEG-coated gold nanoparticles sensitize solid tumors to cold plasma by blocking the PI3K/AKT-driven signaling axis to suppress cellular transformation by inhibiting growth and EMT. Biomaterials, 87, 118–130.
pubmed: 26921841 doi: 10.1016/j.biomaterials.2016.02.014
Liu, Y., et al. (2015). Gd-metallofullerenol nanomaterial as non-toxic breast cancer stem cell-specific inhibitor. Nature Communications, 6(1), 5988.
pubmed: 25612916 doi: 10.1038/ncomms6988
Petersburg, J. R., et al. (2018). Eradication of Established Tumors by Chemically Self-Assembled Nanoring Labeled T Cells. ACS Nano, 12(7), 6563–6576.
pubmed: 29792808 pmcid: 6506352 doi: 10.1021/acsnano.8b01308
Kang, T.-W., et al. (2015). Mica Nanoparticle, STB-HO Eliminates the Human Breast Carcinoma Cells by Regulating the Interaction of Tumor with its Immune Microenvironment. Scientific Reports, 5(1), 17515.
pubmed: 26631982 pmcid: 4668362 doi: 10.1038/srep17515
Yazdi, M. H., et al. (2012). The preventive oral supplementation of a selenium nanoparticle-enriched probiotic increases the immune response and lifespan of 4T1 breast cancer bearing mice. Arzneimittel-Forschung, 62(11), 525–531.
pubmed: 22945771
Rao, L., et al. (2020). Activating Macrophage-Mediated Cancer Immunotherapy by Genetically Edited Nanoparticles. Advanced Materials, 32(47), 2004853.
doi: 10.1002/adma.202004853
Liu, X., et al., Co-localized delivery of nanomedicine and nanovaccine augments the postoperative cancer immunotherapy by amplifying T-cell responses. Biomaterials, 2020. 230: p. 119649.
Yang, X., et al. (2019). Tumor Microenvironment-Responsive Dual Drug Dimer-Loaded PEGylated Bilirubin Nanoparticles for Improved Drug Delivery and Enhanced Immune-Chemotherapy of Breast Cancer. Advanced Functional Materials, 29(32), 1901896.
doi: 10.1002/adfm.201901896
Kuai, R., et al., Elimination of established tumors with nanodisc-based combination chemoimmunotherapy. Science Advances, 2018. 4(4): p. eaao1736.
Lu, J., et al. (2018). Breast Cancer Chemo-immunotherapy through Liposomal Delivery of an Immunogenic Cell Death Stimulus Plus Interference in the IDO-1 Pathway. ACS Nano, 12(11), 11041–11061.
pubmed: 30481959 pmcid: 6262474 doi: 10.1021/acsnano.8b05189
Li, T. F., et al. (2019). Doxorubicin-polyglycerol-nanodiamond composites stimulate glioblastoma cell immunogenicity through activation of autophagy. Acta Biomaterialia, 86, 381–394.
pubmed: 30654213 doi: 10.1016/j.actbio.2019.01.020
Chen, Q., et al. (2016). Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nature Communications, 7(1), 13193.
pubmed: 27767031 pmcid: 5078754 doi: 10.1038/ncomms13193
Lu, Q., et al. (2019). Photothermally activatable PDA immune nanomedicine combined with PD-L1 checkpoint blockade for antimetastatic cancer photoimmunotherapy. Journal of Materials Chemistry B, 7(15), 2499–2511.
pubmed: 32255127 doi: 10.1039/C9TB00089E
Sun, W., et al., Synergistic triple-combination therapy with hyaluronic acid-shelled PPy/CPT nanoparticles results in tumor regression and prevents tumor recurrence and metastasis in 4T1 breast cancer. Biomaterials, 2019. 217: p. 119264.
Yu, W., et al., Sequentially responsive biomimetic nanoparticles with optimal size in combination with checkpoint blockade for cascade synergetic treatment of breast cancer and lung metastasis. Biomaterials, 2019. 217: p. 119309.
Liu, R., et al. (2020). Macrophage-mimic shape changeable nanomedicine retained in tumor for multimodal therapy of breast cancer. Journal of Controlled Release, 321, 589–601.
pubmed: 32114091 doi: 10.1016/j.jconrel.2020.02.043
Liu, R., et al. (2019). Linear Chimeric Triblock Molecules Self-Assembled Micelles with Controllably Transformable Property to Enhance Tumor Retention for Chemo-Photodynamic Therapy of Breast Cancer. Advanced Functional Materials, 29(23), 1808462.
doi: 10.1002/adfm.201808462
Gao, F., et al., Hypoxia-tropic nanozymes as oxygen generators for tumor-favoring theranostics. Biomaterials, 2020. 230: p. 119635.
Liu, D., et al. (2019). Redox-Activated Porphyrin-Based Liposome Remote-Loaded with Indoleamine 2,3-Dioxygenase (IDO) Inhibitor for Synergistic Photoimmunotherapy through Induction of Immunogenic Cell Death and Blockage of IDO Pathway. Nano Letters, 19(10), 6964–6976.
pubmed: 31518149 doi: 10.1021/acs.nanolett.9b02306
Nayak, A., et al. (2019). Nanoquinacrine sensitizes 5-FU-resistant cervical cancer stem-like cells by down-regulating Nectin-4 via ADAM-17 mediated NOTCH deregulation. Cellular Oncology (Dordrecht), 42(2), 157–171.
doi: 10.1007/s13402-018-0417-1
Guo, R., et al. (2019). Development of a Non-Coding-RNA-based EMT/CSC Inhibitory Nanomedicine for In Vivo Treatment and Monitoring of HCC. Advanced Science, 6(9), 1801885.
pubmed: 31065520 pmcid: 6498119 doi: 10.1002/advs.201801885
Luo, L., et al. (2020). Stimuli-responsive polymeric prodrug-based nanomedicine delivering nifuroxazide and doxorubicin against primary breast cancer and pulmonary metastasis. Journal of Controlled Release, 318, 124–135.
pubmed: 31838206 doi: 10.1016/j.jconrel.2019.12.017
Ding, F., et al. (2020). Enhancing the chemotherapeutic efficacy of platinum prodrug nanoparticles and inhibiting cancer metastasis by targeting iron homeostasis. Nanoscale Horiz, 5(6), 999–1015.
pubmed: 32364553 doi: 10.1039/D0NH00148A
Liu, J., et al. (2019). Enhanced Primary Tumor Penetration Facilitates Nanoparticle Draining into Lymph Nodes after Systemic Injection for Tumor Metastasis Inhibition. ACS Nano, 13(8), 8648–8658.
pubmed: 31328920 doi: 10.1021/acsnano.9b03472
Cheng, J., et al., Nanotechnology-Assisted Isolation and Analysis of Circulating Tumor Cells on Microfluidic Devices. Micromachines (Basel), 2020. 11(8).
Izadi, S., et al. (2020). Codelivery of HIF-1alpha siRNA and Dinaciclib by Carboxylated Graphene Oxide-Trimethyl Chitosan-Hyaluronate Nanoparticles Significantly Suppresses Cancer Cell Progression. Pharmaceutical Research, 37(10), 196.
pubmed: 32944844 doi: 10.1007/s11095-020-02892-y
Ye, H., et al. (2019). Bioinspired nanoplatelets for chemo-photothermal therapy of breast cancer metastasis inhibition. Biomaterials, 206, 1–12.
pubmed: 30921730 doi: 10.1016/j.biomaterials.2019.03.024
Morad, S. A., et al. (2016). Short-chain ceramides depress integrin cell surface expression and function in colorectal cancer cells. Cancer Letters, 376(2), 199–204.
pubmed: 27045476 doi: 10.1016/j.canlet.2016.03.049
Krishnamurthy, K., et al. (2008). Deoxycholate promotes survival of breast cancer cells by reducing the level of pro-apoptotic ceramide. Breast Cancer Research, 10(6), R106.
pubmed: 19087284 pmcid: 2656903 doi: 10.1186/bcr2211
Zhu, Y., et al. (2015). Enhanced Anti-Metastatic Activity of Etoposide Using Layered Double Hydroxide Nano Particles. Journal of Biomedical Nanotechnology, 11(12), 2158–2168.
pubmed: 26510310 doi: 10.1166/jbn.2015.2164
Luo, G., et al. (2010). LyP-1-conjugated nanoparticles for targeting drug delivery to lymphatic metastatic tumors. International Journal of Pharmaceutics, 385(1–2), 150–156.
pubmed: 19825404 doi: 10.1016/j.ijpharm.2009.10.014
Zhao, L., et al. (2020). Exosome-mediated siRNA delivery to suppress postoperative breast cancer metastasis. Journal of Controlled Release, 318, 1–15.
pubmed: 31830541 doi: 10.1016/j.jconrel.2019.12.005
Peiris, P. M., et al. (2015). Vascular Targeting of a Gold Nanoparticle to Breast Cancer Metastasis. Journal of Pharmaceutical Sciences, 104(8), 2600–2610.
pubmed: 26036431 doi: 10.1002/jps.24518
Sun, W., et al. (2019). Bone-Targeted Nanoplatform Combining Zoledronate and Photothermal Therapy To Treat Breast Cancer Bone Metastasis. ACS Nano, 13(7), 7556–7567.
pubmed: 31259530 doi: 10.1021/acsnano.9b00097
Bai, S. B., et al. (2020). Bone-targeted PAMAM nanoparticle to treat bone metastases of lung cancer. Nanomedicine (London, England), 15(9), 833–849.
doi: 10.2217/nnm-2020-0024
Chen, S.-H., et al. (2020). Alendronate/folic acid-decorated polymeric nanoparticles for hierarchically targetable chemotherapy against bone metastatic breast cancer. Journal of Materials Chemistry B, 8(17), 3789–3800.
pubmed: 32150202 doi: 10.1039/D0TB00046A
Kraljevic, S. and K. Pavelic, Navigare necessere est. Improved navigation would help to solve two crucial problems in modern drug therapy: toxicity and precise delivery. EMBO Rep, 2005. 6(8): p. 695–700.
Zhou, Y., et al. (2020). Targeted Delivery of Secretory Promelittin via Novel Poly(lactone-co-β-amino ester) Nanoparticles for Treatment of Breast Cancer Brain Metastases. Advanced Science, 7(5), 1901866.
pubmed: 32154067 pmcid: 7055583 doi: 10.1002/advs.201901866
Juthani, R., et al. (2020). Ultrasmall Core-Shell Silica Nanoparticles for Precision Drug Delivery in a High-Grade Malignant Brain Tumor Model. Clinical Cancer Research, 26(1), 147–158.
pubmed: 31515460 doi: 10.1158/1078-0432.CCR-19-1834
Huo, D., et al. (2019). Eradication of unresectable liver metastasis through induction of tumour specific energy depletion. Nature Communications, 10(1), 3051.
pubmed: 31296864 pmcid: 6624273 doi: 10.1038/s41467-019-11082-3
Wang, Z., et al. (2021). Metastasis-associated fibroblasts: An emerging target for metastatic cancer. Biomark Res, 9(1), 47.
pubmed: 34112258 pmcid: 8194104 doi: 10.1186/s40364-021-00305-9
Kaps, L. and D. Schuppan, Targeting Cancer Associated Fibroblasts in Liver Fibrosis and Liver Cancer Using Nanocarriers. Cells, 2020. 9(9).
Li, Y. J., et al. (2020). Emerging nanomedicine-based strategies for preventing metastasis of pancreatic cancer. Journal of Controlled Release, 320, 105–111.
pubmed: 31978441 doi: 10.1016/j.jconrel.2020.01.041
Yin, F., et al., Reduction-responsive polypeptide nanomedicines significantly inhibit progression of orthotopic osteosarcoma. Nanomedicine, 2020. 23: p. 102085.
Kievit, F. M., et al. (2012). Targeting of primary breast cancers and metastases in a transgenic mouse model using rationally designed multifunctional SPIONs. ACS Nano, 6(3), 2591–2601.
pubmed: 22324543 pmcid: 3397248 doi: 10.1021/nn205070h
Li, J., et al. (2014). A multifunctional polymeric nanotheranostic system delivers doxorubicin and imaging agents across the blood-brain barrier targeting brain metastases of breast cancer. ACS Nano, 8(10), 9925–9940.
pubmed: 25307677 doi: 10.1021/nn501069c
Patil, R., et al. (2015). MRI virtual biopsy and treatment of brain metastatic tumors with targeted nanobioconjugates: Nanoclinic in the brain. ACS Nano, 9(5), 5594–5608.
pubmed: 25906400 pmcid: 4768903 doi: 10.1021/acsnano.5b01872
Sundstrom, T., et al. (2013). Automated tracking of nanoparticle-labeled melanoma cells improves the predictive power of a brain metastasis model. Cancer Research, 73(8), 2445–2456.
pubmed: 23423977 doi: 10.1158/0008-5472.CAN-12-3514
Weinstein, J. S., et al. (2010). Superparamagnetic iron oxide nanoparticles: Diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. Journal of Cerebral Blood Flow and Metabolism, 30(1), 15–35.
pubmed: 19756021 doi: 10.1038/jcbfm.2009.192
Peiris, P. M., et al. (2012). Imaging metastasis using an integrin-targeting chain-shaped nanoparticle. ACS Nano, 6(10), 8783–8795.
pubmed: 23005348 pmcid: 3487383 doi: 10.1021/nn303833p
Li, K., Nejadnik, H., & Daldrup-Link, H. E. (2017). Next-generation superparamagnetic iron oxide nanoparticles for cancer theranostics. Drug Discovery Today, 22(9), 1421–1429.
pubmed: 28454771 pmcid: 5610947 doi: 10.1016/j.drudis.2017.04.008
Rajkumar, V., et al. (2015). Texture analysis of (125)I-A5B7 anti-CEA antibody SPECT differentiates metastatic colorectal cancer model phenotypes and anti-vascular therapy response. British Journal of Cancer, 112(12), 1882–1887.
pubmed: 25989271 pmcid: 4580400 doi: 10.1038/bjc.2015.166
Chen, F., et al., Molecular phenotyping and image-guided surgical treatment of melanoma using spectrally distinct ultrasmall core-shell silica nanoparticles. Sci Adv, 2019. 5(12): p. eaax5208.
Diocou, S., et al. (2017). [(18)F]tetrafluoroborate-PET/CT enables sensitive tumor and metastasis in vivo imaging in a sodium iodide symporter-expressing tumor model. Science and Reports, 7(1), 946.
doi: 10.1038/s41598-017-01044-4
Liu, T. W., et al. (2013). Inherently multimodal nanoparticle-driven tracking and real-time delineation of orthotopic prostate tumors and micrometastases. ACS Nano, 7(5), 4221–4232.
pubmed: 23544841 pmcid: 3667620 doi: 10.1021/nn400669r
Parchur, A. K., et al. (2018). Vascular Interventional Radiology-Guided Photothermal Therapy of Colorectal Cancer Liver Metastasis with Theranostic Gold Nanorods. ACS Nano, 12(7), 6597–6611.
pubmed: 29969226 pmcid: 9272590 doi: 10.1021/acsnano.8b01424
Chen, Q., et al. (2014). An albumin-based theranostic nano-agent for dual-modal imaging guided photothermal therapy to inhibit lymphatic metastasis of cancer post surgery. Biomaterials, 35(34), 9355–9362.
pubmed: 25132606 doi: 10.1016/j.biomaterials.2014.07.062
Huo, D., et al. (2014). X-ray CT guided fault-free photothermal ablation of metastatic lymph nodes with ultrafine HER-2 targeting W18O49 nanoparticles. Biomaterials, 35(33), 9155–9166.
pubmed: 25112934 doi: 10.1016/j.biomaterials.2014.07.034
Hoffman, R. M. (2015). Application of GFP imaging in cancer. Laboratory Investigation, 95(4), 432–452.
pubmed: 25686095 doi: 10.1038/labinvest.2014.154
Timpson, P., McGhee, E. J., & Anderson, K. I. (2011). Imaging molecular dynamics in vivo–from cell biology to animal models. Journal of Cell Science, 124(Pt 17), 2877–2890.
pubmed: 21878495 doi: 10.1242/jcs.085191
Naczynski, D. J., et al. (2013). Rare-earth-doped biological composites as in vivo shortwave infrared reporters. Nature Communications, 4, 2199.
pubmed: 23873342 doi: 10.1038/ncomms3199
Kantamneni, H., et al. (2017). Surveillance nanotechnology for multi-organ cancer metastases. Nat Biomed Eng, 1, 993–1003.
pubmed: 29531851 pmcid: 5844578 doi: 10.1038/s41551-017-0167-9
Naczynski, D. J., et al. (2010). Albumin nanoshell encapsulation of near-infrared-excitable rare-Earth nanoparticles enhances biocompatibility and enables targeted cell imaging. Small (Weinheim an der Bergstrasse, Germany), 6(15), 1631–1640.
doi: 10.1002/smll.200902403
Cui, M., et al. (2013). Multifunctional albumin nanoparticles as combination drug carriers for intra-tumoral chemotherapy. Adv Healthc Mater, 2(9), 1236–1245.
pubmed: 23495216 pmcid: 5720860 doi: 10.1002/adhm.201200467
Bennett, Z. T., et al. (2020). Detection of Lymph Node Metastases by Ultra-pH-Sensitive Polymeric Nanoparticles. Theranostics, 10(7), 3340–3350.
pubmed: 32194872 pmcid: 7053196 doi: 10.7150/thno.41239
Zheng, X., et al. (2015). Tracking Cancer Metastasis In Vivo by Using an Iridium-Based Hypoxia-Activated Optical Oxygen Nanosensor. Angewandte Chemie (International ed. in English), 54(28), 8094–8099.
doi: 10.1002/anie.201503067
Molaabasi, F., et al. (2020). Fluorescent Nanoclusters for Imaging of Cells/Stem Cells. Methods in Molecular Biology, 2125, 27–37.
pubmed: 31872332 doi: 10.1007/7651_2019_273
Doolittle, E., et al. (2015). Spatiotemporal Targeting of a Dual-Ligand Nanoparticle to Cancer Metastasis. ACS Nano, 9(8), 8012–8021.
pubmed: 26203676 pmcid: 4579532 doi: 10.1021/acsnano.5b01552
Verry, C., et al., Targeting brain metastases with ultrasmall theranostic nanoparticles, a first-in-human trial from an MRI perspective. Sci Adv, 2020. 6(29): p. eaay5279.
Venditto, V. J., & Szoka, F. C., Jr. (2013). Cancer nanomedicines: So many papers and so few drugs! Advanced Drug Delivery Reviews, 65(1), 80–88.
pubmed: 23036224 doi: 10.1016/j.addr.2012.09.038
Park, K. (2019). The beginning of the end of the nanomedicine hype. Journal of Controlled Release, 305, 221–222.
pubmed: 31170465 doi: 10.1016/j.jconrel.2019.05.044
Anselmo, A. C., & Mitragotri, S. (2016). Nanoparticles in the clinic. Bioeng Transl Med, 1(1), 10–29.
pubmed: 29313004 pmcid: 5689513 doi: 10.1002/btm2.10003
D’Mello, S. R., et al. (2017). The evolving landscape of drug products containing nanomaterials in the United States. Nature Nanotechnology, 12(6), 523–529.
pubmed: 28436961 doi: 10.1038/nnano.2017.67
Gradishar, W. J., et al. (2005). Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. Journal of Clinical Oncology, 23(31), 7794–7803.
pubmed: 16172456 doi: 10.1200/JCO.2005.04.937
Gabizon, A., et al. (1994). Clinical studies of liposome-encapsulated doxorubicin. Acta Oncologica, 33(7), 779–786.
pubmed: 7993646 doi: 10.3109/02841869409083948
Nanobiotix, Nanobiotix Announces First Ever Radioenhancer to Receive European Market Approval. 2019.
Biospace. MagForce Nanotechnologies Receives European Regulatory Approval for Its Nano-Cancer(R) Therapy. 2010; Available from: https://www.biospace.com/article/releases/magforce-nanotechnologies-receives-european-regulatory-approval-for-its-nano-cancer-r-therapy-/?s=74 .
de Lazaro, I., & Mooney, D. J. (2021). Obstacles and opportunities in a forward vision for cancer nanomedicine. Nature Materials, 20(11), 1469–1479.
pubmed: 34226688 doi: 10.1038/s41563-021-01047-7
Kemp, J. A., & Kwon, Y. J. (2021). Cancer nanotechnology: Current status and perspectives. Nano Converg, 8(1), 34.
pubmed: 34727233 pmcid: 8560887 doi: 10.1186/s40580-021-00282-7
Ventola, C. L. (2017). Progress in Nanomedicine: Approved and Investigational Nanodrugs. P T, 42(12), 742–755.
pubmed: 29234213 pmcid: 5720487
Russell, L.M., C.H. Liu, and P. Grodzinski, Nanomaterials innovation as an enabler for effective cancer interventions. Biomaterials, 2020. 242: p. 119926.
Pharmaceuticals, A., Alnylam Receives Approval of ONPATTRO™ (patisiran) in Europe. 2018.
Grodzinski, P., et al. (2019). Integrating Nanotechnology into Cancer Care. ACS Nano, 13(7), 7370–7376.
pubmed: 31240914 doi: 10.1021/acsnano.9b04266
Hare, J. I., et al. (2017). Challenges and strategies in anti-cancer nanomedicine development: An industry perspective. Advanced Drug Delivery Reviews, 108, 25–38.
pubmed: 27137110 doi: 10.1016/j.addr.2016.04.025
Hartshorn, C. M., et al. (2018). Nanotechnology Strategies To Advance Outcomes in Clinical Cancer Care. ACS Nano, 12(1), 24–43.
pubmed: 29257865 doi: 10.1021/acsnano.7b05108
Schoenmaker, L., et al., mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability. Int J Pharm, 2021. 601: p. 120586.
Saxena, M., & Christofori, G. (2013). Rebuilding cancer metastasis in the mouse. Molecular Oncology, 7(2), 283–296.
pubmed: 23474222 pmcid: 5528417 doi: 10.1016/j.molonc.2013.02.009

Auteurs

Leela Rani Avula (LR)

Nanodelivery Systems and Devices Branch, Cancer Imaging Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, MD, USA. leelarani.avula@nih.gov.

Piotr Grodzinski (P)

Nanodelivery Systems and Devices Branch, Cancer Imaging Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, MD, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH