Photobiomodulation treatments drive osteogenic versus adipocytic fate of bone marrow mesenchymal stem cells reversing the effects of hyperglycemia in diabetes.


Journal

Lasers in medical science
ISSN: 1435-604X
Titre abrégé: Lasers Med Sci
Pays: England
ID NLM: 8611515

Informations de publication

Date de publication:
Sep 2022
Historique:
received: 25 11 2021
accepted: 28 03 2022
pubmed: 4 4 2022
medline: 15 9 2022
entrez: 3 4 2022
Statut: ppublish

Résumé

Diabetes mellitus (DM) is a chronic metabolic disease that affects bone metabolism, which can be related to a reduced osteogenic potential of bone marrow mesenchymal stem cells (BM-MSCs). MSCs from diabetic rats (dBM-MSC) have shown a tendency to differentiate towards adipocytes (AD) instead of osteoblasts (OB). Since photobiomodulation (PBM) therapy is a non-invasive treatment capable of recovering the osteogenic potential of dBM-MSCs, we aimed to evaluate whether PBM can modulate MSC's differentiation under hyperglycemic conditions. BM-MSCs of healthy and diabetic rats were isolated and differentiated into osteoblasts (OB and dOB) and adipocytes (AD and dAD). dOB and dAD were treated with PBM every 3 days (660 nm; 5 J/cm

Identifiants

pubmed: 35366748
doi: 10.1007/s10103-022-03553-9
pii: 10.1007/s10103-022-03553-9
doi:

Substances chimiques

Lipids 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2845-2854

Subventions

Organisme : Fundação de Amparo à Pesquisa do Estado de São Paulo
ID : 2019/23350-3
Organisme : Fundação de Amparo à Pesquisa do Estado de São Paulo
ID : 2018/20302-5
Organisme : Fundação de Amparo à Pesquisa do Estado de São Paulo
ID : 2021/04874-1

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature.

Références

Camargo WA, Vries R, Luijk J, Hoekstra JW, Bronkhorst EM, Jansen JA, van den Beucken JJJP (2017) Diabetes mellitus and bone regeneration: a systematic review and meta-analysis of animal studies. Tissue Eng Part B 23:471–479. https://doi.org/10.1089/ten.TEB.2016.0370
doi: 10.1089/ten.TEB.2016.0370
International Diabetes Federation Diabetes Atlas, 9th edition. IDF diabetes atlas. https://www.diabetesatlas.org/upload/resources/material/20200302_133351_IDFATLAS9e-final-web.pdf . Accessed Nov 2021
Sundararaghavan V, Mazur MM, Evans B, Liu J, Ebraheim NA (2017) Diabetes and bone health: latest evidence and clinical implications. Ther Adv Musculoskelet Dis 9:67–74. https://doi.org/10.1177/1759720X16687480
doi: 10.1177/1759720X16687480 pubmed: 28344668 pmcid: 5349336
Jiao H, Xiao E, Graves DT (2015) Diabetes and its effect on bone and fracture healing. Curr Osteoporos Rep 13:327–335. https://doi.org/10.1007/s11914-015-0286-8
doi: 10.1007/s11914-015-0286-8 pubmed: 26254939 pmcid: 4692363
Murray CE, Coleman CM (2019) Impact of diabetes mellitus on bone health. Int J Mol Sci 20:4873. https://doi.org/10.3390/ijms20194873
doi: 10.3390/ijms20194873 pmcid: 6801685
Stolzing A, Sellers D, Llewelyn O, Scutt A (2010) Diabetes induced changes in rat mesenchymal stem cells. Cells Tissue Organs 191:453–465. https://doi.org/10.1159/000281826
doi: 10.1159/000281826
Marin C, Luyten FP, Van der Schueren B, Kerckhofs G, Vandamme K (2018) The impact of type 2 diabetes on bone fracture healing. Front Endocrinol 9:6. https://doi.org/10.3389/fendo.2018.00006
doi: 10.3389/fendo.2018.00006
Fijany A, Sayadi LR, Khoshab N, Banyard DA, Shaterian A, Alexander M, Lakey JRT, Paydar KZ, Evans GRD, Widgerow AD (2019) Mesenchymal stem cell dysfunction in diabetes. Mol Biol Rep 46:1459–1475. https://doi.org/10.1007/s11033-018-4516-x
doi: 10.1007/s11033-018-4516-x pubmed: 30484107
Weidinger A, Kozlov AV (2015) Biological activities of reactive oxygen and nitrogen species: oxidative stress versus signal transduction. Biomolecules 15:472–484. https://doi.org/10.3390/biom5020472
doi: 10.3390/biom5020472
Moldogazieva NT, Mokhosoev IM, Mel’nikova TI, Zavadskiy SP, Kuz’menko AN, Terentiev AA (2020) Dual character of reactive oxygen, nitrogen, and halogen species: endogenous sources, interconversions and neutralization. Biochem 85:S56–S78. https://doi.org/10.1134/S0006297920140047
doi: 10.1134/S0006297920140047
Qian C, Zhu C, Yu W, Jiang X, Zhang F (2015) High-fat diet/low-dose streptozotocin- induced type 2 diabetes in rats impacts osteogenesis and Wnt signaling in bone marrow stromal cells. PLoS ONE 10:e0136390. https://doi.org/10.1371/journal.pone.0136390
doi: 10.1371/journal.pone.0136390 pubmed: 26296196 pmcid: 4546646
Bueno NP, Copete IN, Lopes HB, Arany PR, Marques MM, Ferraz EP (2021) Recovering the osteoblastic differentiation potential of mesenchymal stem cells derived from diabetic rats by photobiomodulation therapy. J Biophotonics 14:e202000393. https://doi.org/10.1002/jbio.202000393
doi: 10.1002/jbio.202000393 pubmed: 33184942
Kim H, Han JW, Lee JY, Choi YJ, Sohn YD, Song M, Yoon YS et al (2015) Diabetic mesenchymal stem cells are ineffective for improving limb ischemia due to their impaired angiogenic capability. Cell Transplant 24:1571–1584. https://doi.org/10.3727/096368914X682792
doi: 10.3727/096368914X682792 pubmed: 25008576
Li CY, Wu XY, Tong JB, Yang XX, Zhao JL, Zheng QF, Zhao GB, Ma ZJ (2015) Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Stem Cell Res Ther 13:55. https://doi.org/10.1186/s13287-015-0066-5
doi: 10.1186/s13287-015-0066-5
Arany P, Cho A, Hunt TD, Sidhu G, Shin K, Hahm E, Huang GX, Weaver J, Chen AC, Padwa BL, Hamblin MR, Barcellos-Hoff MH, Kulkarni AB, Mooney JD (2014) Photoactivation of endogenous latent transforming growth factor-β1 directs dental stem cell differentiation for regeneration. Sci Transl Med 6:238ra69. https://doi.org/10.1126/scitranslmed.3008234
doi: 10.1126/scitranslmed.3008234 pubmed: 24871130 pmcid: 4113395
Anders JJ, Lanzafame RJ, Arany PR (2015) Low-level light/laser therapy versus photobiomodulation therapy. Photomed Laser Surg 33:183–184. https://doi.org/10.1089/pho.2015.9848
doi: 10.1089/pho.2015.9848 pubmed: 25844681 pmcid: 4390214
Fekrazad R, Asefi S, Allahdadi M, Kalhori KAM (2016) Effect of photobiomodulation on mesenchymal stem cells. Photomed Laser Surg 34:533–542. https://doi.org/10.1089/pho.2015.4029
doi: 10.1089/pho.2015.4029 pubmed: 27070113
Torres CS, Santos JN, Monteiro JSC, Amorim PGM, Pinheiro ALB (2008) Photomed laser Surg 28:371–77. https://doi.org/10.1089/pho.2007.2172 .
Escudero JS, Perez MGB, Rosso MPO, Buchaim DV, Pominia KT, Campos LMG, Audi M, Buchaim RL (2019) Photobiomodulation therapy (PBMT) in bone repair: a systematic review. Injury 50:1853–1867. https://doi.org/10.1016/j.injury.2019.09.031
doi: 10.1016/j.injury.2019.09.031 pubmed: 31585673
Ginani F, Soares DM, Barreto MPV, Barboza CAG (2015) Effect of low-level laser therapy on mesenchymal stem cell proliferation: a systematic review. Lasers Med Sci 8:2189–2194. https://doi.org/10.1007/s10103-015-1730-9
doi: 10.1007/s10103-015-1730-9
Borzabadi-Farahani A (2016) Effect of low-level laser irradiation on proliferation of human dental mesenchymal stem cells: a systematic review. J Photochem Photobiol B 162:577–582. https://doi.org/10.1016/j.jphotobiol.2016.07.022
doi: 10.1016/j.jphotobiol.2016.07.022 pubmed: 27475781
Freitas GP, Souza ATP, Lopes HB, Trevisan RLB, Oliveira FS, Fernandes RR, Ferreira FU, Ros FA, Beloti MM, Rosa AL (2020) Mesenchymal stromal cells derived from bone marrow and adipose tissue: isolation, culture, characterization and differentiation. Bio Protoc 10:e3534. https://doi.org/10.21769/BioProtoc.3534
doi: 10.21769/BioProtoc.3534 pubmed: 33654758 pmcid: 7842647
Diniz IMA, Carreira ACO, Sipert CR, Uehara CM, Moreira MSN, Freire L et al (2018) Photobiomodulation of mesenchymal stem cells encapsulated in an injectable rhBMP4-loaded hydrogel directs hard tissue bioengineering. J Cell Physiol 233:4907–4918. https://doi.org/10.1002/jcp.26309
doi: 10.1002/jcp.26309 pubmed: 29215714
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-delta delta C) method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262
doi: 10.1006/meth.2001.1262 pubmed: 11846609
Gregory CA, Gunn WG, Peister A, Prockop DJ (2004) An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Anal Biochem 329:77–84. https://doi.org/10.1016/j.ab.2004.02.002
doi: 10.1016/j.ab.2004.02.002 pubmed: 15136169
van de Vyver M (2017) Intrinsic mesenchymal stem cell dysfunction in diabetes mellitus: implications for autologous cell therapy. Stem Cells Dev 26:1042–1053. https://doi.org/10.1089/scd.2017.0025
doi: 10.1089/scd.2017.0025 pubmed: 28447876
Al-Qarakhli AMA, Yusop N, Waddington RJ, Moseley R (2019) Effects of high glucose conditions on the expansion and differentiation capabilities of mesenchymal stromal cells derived from rat endosteal nicheBMC. Mol Cell Biol 20:51. https://doi.org/10.1186/s12860-019-0235-y
doi: 10.1186/s12860-019-0235-y
Wu V, Helder MN, Bravenboer N, Bruggenkate CMT, Jin J, Klein-Nulend J, Schulten EAJM (2019) Bone tissue regeneration in the oral and maxillofacial region: a review on the application of stem cells and new strategies to improve vascularization. Stem Cells Int 30:6279721. https://doi.org/10.1155/2019/6279721
doi: 10.1155/2019/6279721
Amaroli A, Sabbieti MG, Marchetti L, Zekiy AO, Utyuzh AS, Marchegiani A, Laus F, Cuteri V, Benedicenti S, Agas D (2021) The effects of 808-nm near-infrared laser light irradiation on actin cytoskeleton reorganization in bone marrow mesenchymal stem cells. Cell Tissue Res 383:1003–1016. https://doi.org/10.1007/s00441-020-03306-6
doi: 10.1007/s00441-020-03306-6 pubmed: 33159579
Deng X, Xu M, Shen M, Cheng J (2018) Effects of type 2 diabetic serum on proliferation and osteogenic differentiation of mesenchymal stem cells. J Diabetes Res 5:5765478. https://doi.org/10.1155/2018/5765478
doi: 10.1155/2018/5765478
Zare F, Bayat M, Aliaghaei A, Piryaei A (2020) Photobiomodulation therapy compensate the impairments of diabetic bone marrow mesenchymal stem cells. Lasers Med Sci 35:547–556. https://doi.org/10.1007/s10103-019-02844-y
doi: 10.1007/s10103-019-02844-y pubmed: 31338628
Peng J, Hui K, Hao C, Peng Z, Gao QX, Jin Q, Lei G, Min J, Qi Z, Bo C, Dong QN, Bing ZH, Jia XY, Fu DL (2016) Low bone turnover and reduced angiogenesis in streptozotocin-induced osteoporotic mice. Connect Tissue Res 57:277–289. https://doi.org/10.3109/03008207.2016.1171858
doi: 10.3109/03008207.2016.1171858 pubmed: 27028715
Mota de Sá P, Richard AJ, Hang H, Stephens JM (2017) Transcriptional regulation of adipogenesis. Compr Physiol 7:635–674. https://doi.org/10.1002/cphy.c160022
doi: 10.1002/cphy.c160022 pubmed: 28333384
Ambele MA, Dhanraj P, Giles R, Pepper RS (2020) Adipogenesis: a complex interplay of multiple molecular determinants and pathways. Int J Mol Sci 21:4283. https://doi.org/10.3390/ijms21124283
doi: 10.3390/ijms21124283 pmcid: 7349855
Komori T (2019) Regulation of proliferation, differentiation and functions of osteoblasts by Runx2. Int J Mol Sci 20:1694. https://doi.org/10.3390/ijms20071694
doi: 10.3390/ijms20071694 pmcid: 6480215
Moreno-Viedma V, Tardelli M, Zeyda M, Sibili M, Burks JD, Stulnig TM (2018) Osteopontin-deficient progenitor cells display enhanced differentiation to adipocytes. Obes Res Clin Pract 12:277–285. https://doi.org/10.1016/j.orcp.2018.02.006
doi: 10.1016/j.orcp.2018.02.006 pubmed: 29519755
Hosseinpour S, Fekrazad R, Arany PR, Ye Q (2019) Molecular impacts of Photobiomodulation on bone regeneration: a systematic review. Prog Biophys Mol Biol 149:147–159. https://doi.org/10.1016/j.pbiomolbio.2019.04.005
doi: 10.1016/j.pbiomolbio.2019.04.005 pubmed: 31002851

Auteurs

Natália Pieretti Bueno (NP)

Oral and Maxillofacial Surgery, School of Dentistry, University of Sao Paulo, 2227, Professor Lineu Prestes Avenue, 05508-000, Sao Paulo, Brazil.

Cecília Cardoso Kfouri (CC)

Oral and Maxillofacial Surgery, School of Dentistry, University of Sao Paulo, 2227, Professor Lineu Prestes Avenue, 05508-000, Sao Paulo, Brazil.

Isabella Nunes Copete (IN)

Oral and Maxillofacial Surgery, School of Dentistry, University of Sao Paulo, 2227, Professor Lineu Prestes Avenue, 05508-000, Sao Paulo, Brazil.

Fabíola Singaretti de Oliveira (FS)

Bone Research Lab, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil.

Praveen Arany (P)

Oral Biology, Surgery and Biomedical Engineering, University at Buffalo, Buffalo, NY, USA.

Márcia Martins Marques (MM)

Post-Graduation Program, School of Dentistry, University Ibirapuera, Sao Paulo, Brazil.

Emanuela Prado Ferraz (EP)

Oral and Maxillofacial Surgery, School of Dentistry, University of Sao Paulo, 2227, Professor Lineu Prestes Avenue, 05508-000, Sao Paulo, Brazil. emanuelaferraz@usp.br.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH