Automated Skull Stripping in Mouse Functional Magnetic Resonance Imaging Analysis Using 3D U-Net.
3D U-Net
deep learning
fMRI
mouse
skull stripping
Journal
Frontiers in neuroscience
ISSN: 1662-4548
Titre abrégé: Front Neurosci
Pays: Switzerland
ID NLM: 101478481
Informations de publication
Date de publication:
2022
2022
Historique:
received:
25
10
2021
accepted:
07
02
2022
entrez:
4
4
2022
pubmed:
5
4
2022
medline:
5
4
2022
Statut:
epublish
Résumé
Skull stripping is an initial and critical step in the pipeline of mouse fMRI analysis. Manual labeling of the brain usually suffers from intra- and inter-rater variability and is highly time-consuming. Hence, an automatic and efficient skull-stripping method is in high demand for mouse fMRI studies. In this study, we investigated a 3D U-Net based method for automatic brain extraction in mouse fMRI studies. Two U-Net models were separately trained on T2-weighted anatomical images and T2*-weighted functional images. The trained models were tested on both interior and exterior datasets. The 3D U-Net models yielded a higher accuracy in brain extraction from both T2-weighted images (Dice > 0.984, Jaccard index > 0.968 and Hausdorff distance < 7.7) and T2*-weighted images (Dice > 0.964, Jaccard index > 0.931 and Hausdorff distance < 3.3), compared with the two widely used mouse skull-stripping methods (RATS and SHERM). The resting-state fMRI results using automatic segmentation with the 3D U-Net models are highly consistent with those obtained by manual segmentation for both the seed-based and group independent component analysis. These results demonstrate that the 3D U-Net based method can replace manual brain extraction in mouse fMRI analysis.
Identifiants
pubmed: 35368273
doi: 10.3389/fnins.2022.801769
pmc: PMC8965644
doi:
Types de publication
Journal Article
Langues
eng
Pagination
801769Informations de copyright
Copyright © 2022 Ruan, Liu, An, Wu, Tong, Liu, Liang, Liang, Chen, Zhang and Feng.
Déclaration de conflit d'intérêts
PL was employed by XGY Medical Equipment Co., Ltd. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
AJNR Am J Neuroradiol. 2013 Oct;34(10):1866-72
pubmed: 22936095
J Neurosci Methods. 2014 Jan 15;221:175-82
pubmed: 24140478
IEEE Trans Pattern Anal Mach Intell. 2020 Feb;42(2):318-327
pubmed: 30040631
Proc Natl Acad Sci U S A. 2017 Aug 15;114(33):E6972-E6981
pubmed: 28760982
IEEE Trans Med Imaging. 2010 Dec;29(12):2023-37
pubmed: 20643602
Hum Brain Mapp. 2002 Nov;17(3):143-55
pubmed: 12391568
Neuroimage. 2016 Apr 1;129:460-469
pubmed: 26808333
Front Neurosci. 2019 Aug 16;13:810
pubmed: 31474816
IEEE Trans Med Imaging. 2010 Jun;29(6):1310-20
pubmed: 20378467
IEEE Trans Neural Netw Learn Syst. 2021 Apr;32(4):1713-1722
pubmed: 32365037
Neuroimage. 2014 Apr 1;89:271-9
pubmed: 24316549
Neuroinformatics. 2020 Jun;18(3):395-406
pubmed: 31989442
Methods Mol Biol. 2018;1718:117-134
pubmed: 29341006
IEEE Trans Image Process. 2011 Sep;20(9):2554-64
pubmed: 21411404
Neuroimage. 2015 Dec;123:11-21
pubmed: 26296501
Front Neurosci. 2020 Oct 07;14:568614
pubmed: 33117118
IEEE Trans Radiat Plasma Med Sci. 2019 Mar;3(2):162-169
pubmed: 34722958
J Digit Imaging. 2018 Jun;31(3):290-303
pubmed: 29181613
Med Image Anal. 2017 Apr;37:101-113
pubmed: 28167394
Neuroimage. 2012 Feb 1;59(3):2362-73
pubmed: 21945694
PLoS One. 2011 Apr 18;6(4):e18876
pubmed: 21533116
Brain Res Cogn Brain Res. 1998 Jul;7(1):1-13
pubmed: 9714705
Neuroimage. 2014 May 15;92:322-39
pubmed: 24525169
Neuroimage. 2019 Nov 1;201:115985
pubmed: 31299370
Neuroimage. 2014 Aug 1;96:203-15
pubmed: 24718287
Nat Methods. 2020 Dec;17(12):1262-1271
pubmed: 33139894
Nature. 2010 Jun 10;465(7299):788-92
pubmed: 20473285
Neuroimage. 2021 Apr 1;229:117734
pubmed: 33454412
Neurocomputing. 2020 Jun 7;392:277-295
pubmed: 32773965
Nat Med. 2018 Sep;24(9):1342-1350
pubmed: 30104768
Neuroimage. 2020 Jan 1;204:116242
pubmed: 31586674
Neuron. 2019 Aug 21;103(4):702-718.e5
pubmed: 31227310
Neuroimage. 2004 Jul;22(3):1060-75
pubmed: 15219578